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Abstract

This paper proposes χ2-type tests for assessing the specification of regression mod-

els or general conditional moment restrictions. The data is partitioned according

to the explanatory variables into several cells, and the tests evaluate whether the

difference between the observed average of the dependent variable and its expected

value under the model specification arises by chance. In contrast to existing om-

nibus procedures, χ2 tests are asymptotically pivotal and fairly insensitive to the

curse of dimensionality. The computation is straightforward and does not require

bootstrapping or smoothing techniques. Importantly, the asymptotic properties of

the test are invariant to sample-dependent partitions, which can be chosen to favor

certain alternatives. A Monte Carlo study provides evidence of the good perfor-

mance of the tests using samples of small or moderate size compared with existing

omnibus alternatives, particularly when there are many explanatory variables. An

empirical application regarding returns to education of African American students

in the US complements the finite sample study.
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1 Introduction

The identification and estimation of causal relationships often rely on models defined

by conditional moment restrictions (CMR), typically in the form of parametric regression

models. Ensuring the correct model specification is crucial for drawing valid inferences and

providing reliable interpretations. This article introduces χ2 tests to check the goodness-

of-fit of CMR model specifications.

Existing tests, rooted in the definition of the integrated regression function (IRF),

expand upon classical goodness-of-fit tests designed for cumulative density function (CDF)

specifications and apply them to the regression model checking. The IRF generalizes

the one-to-one relationship between density and the CDF to the regression framework,

enabling the extension of all the tests proposed for CDFs to the context of regression.

The alternative test statistics are characterized by a functional of the standard empirical

process (SEP), which is defined as the difference between the empirical IRF/CDF and its

restricted counterpart under the null hypothesis, suitably scaled.

Omnibus tests are designed to assess whether any deviations of the SEP from zero

arise by chance rather than due to model misspecification. Classical test statistics for CDF

specifications, which are based on a norm of the SEP, such as the well-known Kolmogorov-

Smirnov, Cramér-von Mises, or Anderson-Darling tests, have been extended to the context

of regression model specifications by Bierens (1982), Stute (1997), and Andrews (1997),

among others. Several tests are based on transformations of the SEP. For instance, test

statistics based on Fourier transforms of the SEP, which in fact compare characteristic

functions (e.g., Koutrouvelis and Kellermeier 1981), have been adapted to the regression

case by Bierens (1982) and Bierens and Ploberger (1997). Tests based on martingale

transforms of the SEP (Khmaladze 1982) have been extended by Khmaladze and Koul

(2004). Additionally, specification tests for Lebesgue density specification, which rely on

the convolution of the SEP and a kernel function (e.g., Bickel and Rosenblatt 1973), have

been extended to regression models by Hardle and Mammen (1993). All of these tests are

known as minimum-distance tests (Pollard 1980).

When the model parameters are estimated from the sample, the SEP converges in

distribution to a case-dependent process, and the tests are implemented using bootstrap
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techniques. Two exceptions exist: (i) test statistics based on the SEP martingale trans-

form, which converge in distribution to a Brownian motion with tabulated critical values;

and (ii) test statistics based on the convolution of the SEP and a kernel function, suitably

centered and standardized, with a standard normal limit distribution under the null when

the bandwidth parameter vanishes at a suitable rate as the sample size diverges. However,

the size properties of tests based on convolutions depend on the bandwidth choice, and

in practice, the tests are implemented using bootstrap.

It is well known that tests based on the SEP exhibit poor power properties in the

direction of high-frequency alternatives, as pointed out by Durbin and Knott (1972) based

on the study of the SEP’s principal components. Stute (1997) generalized these results

to the regression case. Tests that rely on convolutions of the SEP and a kernel, with

a vanishing bandwidth, are capable of detecting high-frequency alternatives but fail to

detect the standard departures converging to the model in the null at the parametric rate.

All of these tests are affected by the curse of dimensionality, showing limited power when

the number of explanatory variables is large.

In practice, χ2 tests, such as the Pearson (1900) primeval test and its subsequent

versions, are among the most popular goodness-of-fit tests for CDF model specifications.

These tests, after partitioning the data into a number of cells, say L, evaluates whether

the difference between the observed and the expected frequencies within each cell occur

by chance. The Pearson test statistics, for instance, can be represented as a quadratic

form in the vector of differences between observed and expected frequencies. Note that

the χ2 tests are not omnibus: their goal is to detect alternatives where the true probability

of one observation falling into a particular cell differs from the expected value specified

by the model. However, they have important advantages with respect to tests based on

SEP functionals. They are distribution-free and do not require the use of bootstrapping

or smoothing techniques. Additionally, these tests are invariant to sample-dependent

partitions, which can then be chosen to favor certain alternatives of interest. Also, they

are computationally friendly.

Surprisingly, the χ2 tests have not been extended to check the specification of CMR.

This paper aims to fill this gap by proposing to group the data according to a partition

of the explanatory variables into L classes, and considering χ2 tests given by quadratic
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forms in the vector of differences between observed and expected (according to the model)

sample averages within each class. The Pearson test analog is a weighted sum of these

squared differences, which is in fact a J test for the orthogonality conditions between

regression errors and the explanatory variables in each of the L classes. The paper also

considers a generalized Wald test statistic: a quadratic form in the vector of differences

between observed and expected sample averages using any
√
n-consistent estimator of the

parameters in the model.

Much like the classical χ2 test statistic, these tests have a limiting null distribution

which is invariant to sample-dependent partitions. I propose algorithms for the calculation

of balanced cells, each designed to contain approximately the same number of observa-

tions, as well as unbalanced partitions intended to favor specific alternatives. I consider

tests based on Neyman-Pearson (NP) partitions built upon deviations of the model fits

under the null hypothesis from a predefined alternative, see Balakrishnan, Voinov, and

Nikulin (2013). Under the correct specification of the alternative model, the NP partition

maximizes the distance between the null and alternative models, thereby enhancing the

power of the tests. In cases where there are no specific alternatives to prioritize, the

recommendation is to utilize NP cells that compare the model under the null hypothesis

with an auxiliary, flexible specification of the regression model.

Monte Carlo simulations show the good performances of the χ2 tests compared to

omnibus tests, particularly when the covariates dimension is high. The finite-sample

study is complemented with an empirical illustration in which I apply the tests to analyze

the returns of attending historically black college and universities (HBCU), relative to

non-HCBU, for black students in the United States.

The structure of the paper is as follows. In the next section, I introduce the tests

focusing on regression specifications. This facilitates the motivation and presentation and

reduces the notational burden required for the more general case. In Section 3, I dis-

cuss the asymptotic properties of the tests using sample dependent partitions. Section

4 introduces partitioning algorithms designed to enhance the power of the tests. Sec-

tion 5 analyzes Pitman’s local power. In Section 6, I extend the discussion to general

CMR. Section 7 presents a Monte Carlo study. In the last section, I provide a real-data

application.
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2 Chi-Squared Tests for CMR

Let {Zi}ni=1 = {(Yi, X
′
i)

′}ni=1 be an i.i.d sample from the R1+dx-valued random vector Z =

(Y,X ′)′ with distribution P , where Y is the response variable, andX is the dx-dimensional

vector of explanatory variables taking values in X ⊂ Rdx . The correct specification

hypothesis is stated as,

H0 : m ∈ M (1)

with m(·) = E [Y |X = ·] and M = {mθ(·) : θ ∈ Θ ⊂ Rdθ} being a family of paramet-

ric regression functions and a suitable parameter space, respectively. Thus, under H0,

there exists a θ0 ∈ Θ such that the IRF, M(x) = E
[
Y I(−∞,x](X)

]
, with I(−∞,x](X) =∏dx

j=1 I(−∞,xj ](Xj), and its version imposing the null hypothesis restrictions, Mθ(x) =

E
[
mθ(X)I(−∞,x](X)

]
, are equal in all the Borel sets of X , i.e.

M{A} = Mθ0{A} for all A ∈ Bdx , (2)

where Bdx represent the Borel sigma-field of Rdx , M{A} =
∫
A
M(dx) and Mθ{A} =∫

A
Mθ(dx) denote the Lebesgue-Stieltjes measure ofM andMθ over A, respectively. Recall

that (2) is the definition of the regression function for the specification in H0 (e.g., see

definition 34.1 in Billingsley (2017)), which is equivalent to the following orthogonality

conditions,

H0 : E [εθ0|X] = 0 a.s. for some θ0 ∈ Θ,

with εθ(z) = y −mθ(x), z = (y, x′)′, denoting the regression error.

Intuitively, when X takes values in a finite set and θ0 is known (i.e., under the simple hy-

pothesis), a test for H0, following proposal Pearson (1900) proposal, consists of comparing

the conditional mean with the assumed regression model for all x ∈ X . In this case, such

a test is indeed omnibus (i.e. the test detect all the possible alternatives). For any type

of covariates, once the data is partitioned into L cells, say, χ2 tests assess whether the

difference between the expected and observed averages in each cell arose by chance.

Consider the partition γ = (γ1, . . . , γL) of the covariates space X into L cells and let

Iγ(x) = (Iγ1(x), . . . , IγL(x))′ denote the vector of indicator functions over the sets within

γ. The building block of the χ2 test statistics is the standardized vector of differences
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between the observed averages of Y and the corresponding averages under the specification

of H0 in each cell,

Φ̂γ(θ) =
√
n
(
µ̂0

γ − µ̂γ(θ)
)
=

√
n
(
µ̂0
1 − µ̂1(θ), . . . , µ̂

0
L − µ̂L(θ)

)′
, (3)

where µ̂0
l = M̂{γl} = n−1

∑n
i=1 YiIγl(Xi) is the empirical IRF evaluated at γl, with M̂(x) =

n−1
∑n

i=1 YiI(−∞,x](Xi), and µ̂l(θ) = M̂θ{γl} = n−1
∑n

i=1 mθ(Xi)Iγl(Xi) is its restricted

version under H0, with M̂θ(x) = n−1
∑n

i=1 mθ(Xi)I(−∞,x](Xi).

Under a simple hypothesis, i.e. when θ0 is known, by the central limit theorem, under

the null,

Σ̂γ(θ0)
−1/2Φ̂γ(θ0)

d−→ N(0, IL), (4)

where Σ̂γ(θ) = n−1
∑n

i=1 ε
2
θ(Zi)Iγ(Xi)Iγ(Xi)

′ estimates,

Σγ,0 = Avar
(
Φ̂γ(θ0)

)
= diag{σ2

0,1, ..., σ
2
0,L}, (5)

under H0, with σ2
0,l = σ2

l (θ0), and σ2
l (θ) = E [ε2θ(Z)Iγl(X)]. Thus, taking for granted that

ρl = E [Iγl(X)] > 0 for all l, under H0,

χ̂2

γ,0(θ0)
d−→ χ2

L, (6)

where

χ̂2

γ,0(θ) = Φ̂γ(θ)
′Σ̂γ(θ0)

−1Φ̂γ(θ) = n
L∑
l=1

(µ̂0
l − µ̂l(θ))

2

σ̂2
0,l

, (7)

and σ̂2
0,l = n−1

∑n
i=1 ε

2
θ0
(Zi)Iγl(Xi). The test statistic χ̂2

γ,0(θ0) extends the classical Pear-

son’s chi-squared test to check regression model specifications. It does so by replacing the

comparison of observed frequencies with expected frequencies under the null hypothesis

with a comparison of averages.

Of course, tests based on (3) are not omnibus, but designed for detecting deviations

from H0 of the type,

H1(γ) : µ
0
γ ̸= µγ(θ) for all θ ∈ Θ, (8)

where µ0
γ = (µ0

γ1
, ..., µ0

γL
)′ = (M{γ1}, . . . ,M{γL})′ is the vector of expected averages of
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Y in each cell and µγ(θ) = (µγ1(θ), ..., µγL(θ))
′ = (Mθ{γ1}, . . . ,Mθ{γL})′ is its restricted

version under H0. The partitions cover a fundamental role in implementing the test and

provide a flexible tool to exploit out-of-sample information on the possible alternatives.

Neyman-Pearson (NP) cells (Balakrishnan, Voinov, and Nikulin 2013), for instance, con-

sist of the points in X where the specification under the null and a pre-specified alternative

coincide (see Example 1 below). Under the pre-specified alternative, NP classes maximize

the L2 norm of Φ̂γ .

Example 1 (NP Classes)

Consider testing the linear model mθ(Xi) = θ0+θ1Xi against the alternative specification,

H1 : m1,θ∗(Xi) = θ0 + θ1Xi + θ∗2 sin

(
50Xi

2π

)

where θ∗ = (θ, θ∗2) is a known vector. NP classes split X over the points where θ∗2 sin
(
50x
2π

)
=

0 and, hence, mθ(·) = m1,θ∗(·). As a result, under H1, mθ(·) is strictly bigger or strictly

smaller than m1,θ∗(·) within each cell, and most cell-specific errors have the same sign, im-

plying that the average error of a single cell is larger than the average error over the union

of two contiguous cells (in absolute terms). See Figure 1 for a graphical representation of

the partition.

When θ0 is unknown, the criterion in (7) suggests the following minimum distance

estimator, hereafter referred to as the grouped GMM estimator:

θ̂γ = argmin
θ∈Θ

χ2
γ(θ) (9)

where

χ̂2

γ(θ) = Φ̂γ(θ)
′Σ̂γ(θ̃)

−1Φ̂γ(θ) = n

L∑
l=1

(µ̂0
l − µ̂l(θ))

2

σ̂2
l (θ̃)

,

σ̂2
l (θ) = n−1

∑n
i=1 ε

2
θ(Zi)Iγl(Xi), and θ̃ is some initial

√
n-consistent estimator of θ0. The

estimator θ̂γ is analogous to the multinomial maximum-likelihood estimator (or minimum

χ2 estimator) in the classical case (see Cramér 1946). Under linear null hypothesis, i.e.

mθ(x) = x′θ, this corresponds to the feasible GLS estimator based on the aggregated data
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Figure 1: The graph depicts a random draw from the model under H1

with θ∗0 = (1, 1, 1). The green lines depict the points where the
model under the null (blue line) and under the alternative (red
line) meet.

{Ȳl, X̄l}Ll=1,

θ̂γ =

[
L∑
l=1

X̄lX̄
′
l

σ̂2
l (θ̃)

]−1 L∑
l=1

X̄lȲl

σ̂2
l (θ̃)

,

with Ȳl = n−1
∑n

i=1 YiIγl(Xi) and X̄l = n−1
∑n

i=1XiIγl(Xi). In the non-linear case, we

can iterate a feasible asymptotically efficient Gauss-Newton estimator starting from any

preliminary
√
n-consistent estimator θ̃,

θ̂(1)γ = θ̃ +

[
L∑
l=1

µ̂∗
l (θ̃)µ̂

∗
l (θ̃)

′

σ̂2
l (θ̃)

]−1 L∑
l=1

µ̂∗
l (θ̃)(µ̂

0
l − µ̂l(θ̃))

σ̂2
l (θ̃)

(10)

with µ̂∗
l (θ) = n−1

∑n
i=1∇mθ(Xi)Iγl(Xi) and ∇mθ̄ = d/dθ′mθ|θ=θ̄. The estimator belongs

to the class of minimum-distance estimators considered by Cristobal, Roca, and Manteiga

(1987) and Koul and Ni (2004), with the main difference that the regressogram is used

instead of kernels, and the weighting introduced to improve efficiency. Under suitable

regularity conditions and under H0,

√
n(θ̂γ − θ0)

d−→ N

(
0,
[
µ∗′

γ,0(Σγ,0)
−1µ∗

γ,0

]−1
)
,
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where µ∗
γ,0 = µ∗

γ(θ0), with µ∗
γ(θ) = (µ∗

1(θ), ..., µ
∗
L(θ))

′ and µ∗
l (θ) = E [µ̂∗

l (θ)] denoting the

matrix of partial derivatives of µγ(θ).

The χ̂2 test statistics is, for L > dθ,

χ̂2

γ = min
θ∈Θ

χ̂2

γ(θ) = χ̂2

γ(θ̂γ), (11)

which is in fact a J test on the set of the L, out of the (possibly) many, orthogonality

conditions implied by the null,

E
[
Y Iγl(X)

]
= E

[
mθ0(X)Iγl(X)

]
for all l ∈ {1, 2, .., L}.

Thus, under H0, and for L > dθ,

χ̂2

γ

d−→ χ2
L−dθ

. (12)

Is also well motivated, as suggested in classical goodness-of-fit χ2 tests (e.g. Nikulin

1973 and Rao and Robson 1974), using the Wald testing principle based on Φ̂γ(θ̃), em-

ploying any
√
n-consistent estimator θ̃,

Ŵγ(θ̃) = Φ̂γ(θ̃)Âvar
−
(
Φ̂γ(θ̃)

)
Φ̂γ(θ̃), (13)

where Âvar−(Φ̂γ(θ̃)) is a consistent estimator of some generalized inverse of Avar
(
Φ̂γ(θ̃)

)
,

Avar−
(
Φ̂γ(θ̃)

)
say. Assuming Âvar−

(
Φ̂γ(θ̃)

)
p→ Avar−

(
Φ̂γ(θ̃)

)
, and suitable regularity

conditions, under H0,

Ŵγ(θ̃)
d−→ χ2

r(Avar(Φ̂γ (θ̃))), (14)

where for a given square matrix A, r(A) denotes its rank.

Taking for granted the asymptotic linearity of the estimator (see Assumption 3 in the

next section), the covariance matrix of Φ̂γ(θ̃) is characterized as,

Avar
(
Φ̂γ(θ̃)

)
= Σγ,0 − µ∗

γ,0C
′
γ,0 − Cγ,0µ

∗′
γ,0 + µ∗

γ,0L0µ
∗′
γ,0, (15)

where Cγ,0 = E [εθ0(Z)Iγ(X)lθ0(Z)
′], L0 = E [lθ0(Z)lθ0(Z)

′], and lθ0(·) is the influence
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function of θ̃. When Avar
(
Φ̂γ(θ̃)

)
is full rank (e.g., if εθ0(·)Iγ(·) and lθ0(·) have linearly

independent components), the Wald test can be performed on any finite splitting of the

data. In this case, a valid choice of Âvar−
(
Φ̂γ(θ̃)

)
is given by the inverse of,

Ŵγ(θ̃) = Σ̂γ(θ̃)− µ̂∗
γ(θ̃)Ĉγ(θ̃)

′ − Ĉγ(θ̃)µ̂
∗′
γ (θ̃) + µ̂∗

γ(θ̃)L̂(θ̃)µ̂
∗′
γ (θ̃), (16)

where µ̂∗
γ(θ) = (µ̂∗

1(θ), ..., µ̂
∗
L(θ))

′, Ĉγ(θ) = n−1
∑n

i=1 εθ(Zi)Iγ(Xi)lθ(Zi)
′, and L̂(θ) =

n−1
∑n

i=1 lθ(Zi)lθ(Zi)
′. If the covariance matrix is rank deficient and the Moore-Penrose

inverse of Ŵγ(θ̃), denoted as Ŵ+
γ (θ̃), has rank converging in probability to the one of

Avar
(
Φ̂γ(θ̃)

)
, then Ŵ+

γ (θ̃)
p−→ Avar+

(
Φ̂γ(θ̃)

)
(Theorem 2 of Andrews 1987). However,

this need not be the case (Schott 2016, p. 222-224) and more complex methods might

be required (see, e.g., Lütkepohl and Burda 1997). Consider, for instance, the nonlinear

least squares (NLLS),

θ̃ = argmin
θ∈Θ

n∑
i=1

εθ(Zi)
2.

Under homoskedasticity, i.e. Var(εθ0(Z)|X = x) = σ2
0 =

∑L
l=1 σ

2
0,l, it holds that, lθ0(z) =

Ψ−1
0 ∇mθ0(x)εθ0(z), where Ψ0 = E [∇mθ0(X)∇mθ0(X)′]. Under H0, when θ̃ is asymp-

totically more efficient than θ̂γ , i.e., when Avar(θ̂γ) − Avar(θ̃) is p.d., Avar
(
Φ̂γ(θ̃)

)
=

Σγ,0 − σ2
0µ

∗
γ,0Ψ

−1
0 µ∗′

γ,0 is also p.d., and Ŵ(θ̃)
d−→ χL. A similar reasoning holds for the

probit/logit maximum likelihood estimator (MLE), as discussed in Section 8. Under het-

eroskedasticity, however, Avar
(
Φ̂γ(θ̃)

)
is not necessarily an invertible matrix.

Notice that the estimation of the covariance matrix, when Avar
(
Φ̂γ(θ̃)

)
is full rank,

can be avoided by using a random normalizing weighting matrix, as in Kuan and Lee

(2006) (see also Kiefer, Vogelsang, and Bunzel 2000 for an early reference). Similarly, the

over-identification test of Lee, Kuan, and Hsu (2014) provides a robust version of the χ̂2

test which does not require estimating Σ̂γ(θ̃). In these cases, the limit null distribution

is non-standard, but pivotal.
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3 Data-dependent Cells

When studying the large sample behavior of the statistics, it is crucial to address the

inherent influence of the data on the selection of cells (Watson 1959). Moore and Spruill

(1975) were among the first to address this concern in the distribution model check liter-

ature providing a rigorous derivation of the null distribution of χ2 tests with rectangular

data-dependent cells. In a more general setting, Pollard (1979) established the result for

cells of arbitrary form using uniform results for empirical processes indexed by sets, while

Andrews (1988a,b) and Delgado and Vainora (2023) applied the methodology to condi-

tional distribution testing. This section provides a similar result for the more general

CMR testing framework, showing that the grouped GMM estimator and the tests keep

standard limit distribution when the partition is built with data-dependent cells.

A minimal set of assumptions, consisting of smoothness conditions and restrictions

on the partitioning algorithm complexity, allows to state the convergence results in a

self-contained fashion.

Assumption 1 (a) {Zi = (Yi, X
′
i)

′}ni=1 is a sequence of i.i.d. random vectors with

E|Yi| < ∞; (b) E
[
ε2θ0
]
< C, with C < ∞; (c) Θ is a compact subset of Rdθ and θ0 is an

interior point of Θ.

Assumption 2 mθ(·) is twice continuously differentiable in a neighborhood Nθ0 of θ0,

with Nθ0 ⊂ Θ. The gradient, ∇mθ(·) = d/dθmθ(·), is bounded by a square-integrable

function R(·) such that supθ∈Θ0
|∇(j)mθ(·)| ≤ R(·) for all j ∈ {1, .., dθ}, where ∇(j) denotes

the j-th partial derivative, and E [R(X)2] < ∞.

Assumption 3

(a) The estimator θ̃ satisfies the following asymptotic expansion under the null,

√
n(θ̃ − θ0) =

1√
n

n∑
i=1

lθ0(Zi) + op(1)

where E [lθ0(Z)] = 0 and L0 = E [lθ0(Z)lθ0(Z)
′] is a finite and non-singular matrix.

(b) The vector-valued function lθ(·) is twice continuously differentiable in a neighborhood
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Θ0 of θ0 with first partial derivatives bounded by a square-integrable function R2(·)

such that supθ∈Θ0
|∇(j)lθ(·)| ≤ R2(·) for all j ∈ {1, .., dθ} and E [R2(Z)

2] < ∞.

Assumptions 1 and 2 are common in the model check literature (see Stute and Zhu 2002,

for instance). Compared to papers developing χ2 tests based on a probability model

(e.g., Tauchen 1985), these require slightly higher smoothness conditions of the regression

function, but leave completely unrestricted the data distribution. Assumption 3(a) holds

for most of the estimators used in practice, such as least squares or GMM estimators, as

well as for identification-robust minimum-distance estimators (see, e.g., Domı́nguez and

Lobato 2004). While Assumption 3(b) is a technical requirement for the consistency of

the plug-in estimator Ŵγ(θ̃).

Let also state the necessary global identification and finite-variance conditions for the

consistency and asymptotic normality of the grouped GMM estimator.

Assumption 2’ (a) Σγ,0 is positive definite (p.d.); (b) E [Y Iγ ] = E [mθ(X)Iγ ] if and

only if θ = θ0; (c) µ∗
γ,0 is full rank.

Notice that identification depends crucially on the partitioning choice γ and might not

hold in practice. In the next section, I discuss instances where the assumption fails and

how to avoid them.

Following Pollard (1979) and Andrews (1988a), the data-dependent partitions are

modeled as random functions over a class of properly restricted measurable sets. Specifi-

cally, let C be a class of measurable sets in X from which the cells of each partition are

drawn, and denote as D the class of partitions of X comprised of L sets from C (L is fixed

for all n); that is,

D =

{
γ = (γ1, ..., γL) ∈ CL :

L⋃
l=1

γl = X , γl
⋂

γf = ∅, ∀l ̸= f

}
, (17)

where γl and γf denote sets of the partition γ. We equip C with the topology generated

by the L2(Fx) semi-norm, Fx being the distribution of X under P , and give D the corre-

sponding product topology. This means that two set C1, C2 in X are close if Fx{C1∆C2}

is small, where ∆ denotes the symmetric difference operator, C1∆C2 = C1 ∪C2\C1 ∩C2.
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For each sample size n the corresponding partition is determined by a measurable

mapping, denoted as γ̂ = (γ̂1, . . . , γ̂L), from the underlying probability space to D, which

converges in probability to some fixed partition of cells in D. In other words, for all ϵ > 0,

P (Fx{γ̂l∆γl} > ϵ) −→ 0 as n −→ ∞, for all l = 1, 2, ..., L.

Assumption 4 Under H0, γ̂
p−→ γ for some fixed set of cells γ ∈ D

Assumption 4 represents a standard requirement in the literature concerning empirical

processes indexed by sets, and it is satisfied by a broad range of partitioning algorithms.

For example, this assumption is met when the cells depend on θ̃ in a continuous fashion,

and θ̃ converges in probability to a non-random vector (Andrews 1988b). However, it

is less clear whether cells generated by the comparison of different estimators meet this

requirement, as discussed in the next section.

It is also possible to relax Assumption 4 to cases where γ̂ converges to a random

element γ0 ∈ D. This is achieved by replacing the convergence in probability with a

uniform tightness condition and ensuring asymptotic independence between γ̂ and Φ̂γ(θ0).

Refer to Section 6 of Pollard (1979) for further discussions.

Crucially, deriving the limit null distribution requires bounding the complexity of the

partitions employed for test construction. This is achieved by assuming that the cells are

drawn from a Vapnik-Cervonenkis (VC) class.

Assumption 5 C is a VC class of sets.

This assumption is convenient because it is independent of the data distribution P ,

yet it is general enough for our purposes. For example, algorithms that generate cells

with a finite number of straight edges and the class of hyper ellipsoids are VC classes.

Furthermore, unions, intersections, differences, and complements of VC classes are also

VC classes (Andrews 1988a and Pollard 1984 provide a thorough discussion, see also

Section 2.6 in Van Der Vaart 1996). A less stringent condition assumes that C is a

Donsker class for the underlying probability measure (Pollard 1979). While this allows

for a wider range of admissible partitions, verifying Donsker assumptions may prove more

challenging in practice.

13



The following theorems show that the asymptotic distribution of the grouped GMM

estimator and of the test statistics are unaffected by data-dependent cells. All the proofs

are relegated to the appendix.

Theorem 1 Let Assumptions 1, 2, 2’, 4, 5 hold. Then, under the null hypothesis H0,

√
n(θ̂γ̂ − θ0)

d−→ N

(
0,
[
µ∗′

γ,0(Σγ,0)
−1µ∗

γ,0

]−1
)
,

Theorem 2 Let Assumptions 1, 2, 4, 5, and the null hypothesis H0 hold. Then,

(a) Under Assumption 2’ and L > dθ,

χ̂2

γ̂

d−→ χ2
L−dθ

.

(b) Under Assumption 3, and Âvar−
(
Φ̂γ̂(θ̃)

)
p→ Avar−

(
Φ̂γ̂(θ̃)

)
,

Ŵγ̂(θ̃)
d−→ χ2

r(Avar(Φ̂γ (θ̃))).

The upcoming section introduces a variety of partitioning procedures, discussing meth-

ods based on unsupervised clustering and model-based techniques that leverage informa-

tion on the null hypothesis and pre-specified alternatives.

4 Partitioning Procedures

The partitioning algorithms can be divided into covariate-based methods and model-

based methods, depending on the information used to split the sample. The first classifies

the data exclusively based on the characteristics of the population and does not have a

predictable effect on the power of the test. In contrast, model-based methods exploit

information about the model under the null hypothesis and pre-specified alternatives to

increase the power of the tests in those directions. The objective of these procedures is to

construct partitions where the distance between the vectors of average predictions under

the null and alternative hypotheses is maximized.
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In this section, I first briefly explore the construction of partitions using covariate-

based methods and the limitations related to the local identification of the χ̂2 test. Next,

the discussion turns to the construction of Neyman-Pearson (NP) classes. These par-

titioning algorithms aim to maximize the probability of rejecting the null hypothesis

by comparing the parametric fits under the null and the pre-specified alternative. This

method is particularly useful when the researcher’s primary concern is rejecting a subset

of deviations critical for the application at hand.

When the alternative is left unrestricted, the recommendation is to construct NP

classes using an auxiliary flexible specification of the regression model (see Davidson,

MacKinnon, et al. 2004 Ch. 15.2 for a review of tests based on artificial regressions). The

procedure assumes a structured alternative model, which allows to capture deviations

from the null hypothesis by exploiting the conditional mean dependence of the parametric

residuals from the fitted values under the alternative.

Lastly, I discuss the conditions for convergence in probability of NP classes to fixed

cells in D. Since these partitioning methods rely on comparing different estimators, un-

derstanding the convergence to fixed cells is not straightforward and requires additional

investigation. Conditions for covariate-based partitioning methods are already discussed

in Andrews (1988a) and Andrews (1988b).

4.1 Covariate-based Partitioning Methods

Partitioning methods based on covariate encompass both straightforward approaches,

such as dividing the data into cubic cells, and more sophisticated techniques like k-means

clustering, hierarchical clustering, and nearest-neighbor clustering, among others (refer

to Chapter 14 of Hastie, Tibshirani, and Friedman 2009 for a review of unsupervised

clustering methods).

In the testing context, statistical practice involves dividing data into equiprobable cells

when testing against unknown probability distributions (see, for instance, Greenwood and

Nikulin 1996). This can be achieved through various methods, including partitioning into

unions of statistically equivalent blocks (SEB), as discussed by Gessaman (1970). The

procedure, applied to an n × dF design matrix, involves sorting observations by column
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values and grouping them into S blocks at each iteration. Here, S is a user-chosen

parameter, resulting in a partition with SdF cells. To avoid generating excessively fine

partitions, instead of applying the algorithm directly to the design matrix, X, one can

apply the algorithm to a lower-dimensional projection of the data, such as the first q

principal components of X or the fitted values of the parametric model under the null

hypothesis. In the latter case, the algorithm is equivalent to splitting the data based on

the S quantile of mθ̃(Xi)
n
i=1.

In practice, as discussed in the next sub-section, these methods are implemented in

conjunction with other model-based partitioning algorithms. Their primary objective is

to generate additional splits for the preliminary two-cell partition created by the model-

based methods, which are subsequently used to construct the final partition.

However, it’s important to note that the χ̂2 requires the L moment conditions gen-

erated by the partition to identify θ0, as outlined in Assumption 2’. This imposes addi-

tional restrictions on the set of feasible partitioning algorithms. For example, consider

a scenario where X = (X1, . . . , Xdx)
′, with dx > 2, and Xj being mutually independent

and identically distributed random variables for each j = 1, ..., dx. In the linear setting,

H0 : m(x) = θ′0x, Assumption 2’(c) - i.e., the matrix of partial derivatives µ∗
γ,0 is of full

rank - is equivalent to assuming that the vector of grouped covariates,

µ∗
γ,0 = E [Iγ(X)X ′] ,

is linearly independent. Then, it is easy to show, that if the partition is based only on

one dimension of the data - e.g., γl = {x ∈ X : x1 ∈ [al−1, al]} and ∪L
l=1[al−1, al] = R,

for l = 1, . . . , L - the matrix µ∗
γ,0 is rank deficient. This is because the partition cells

are uninformative about the values the other covariates can take and, by independence

and identical distribution, it follows that E [XjIγl(X1)] = E [XkIγl(X1)] for any j, k ̸= 1

and all l. Even when the partitioning utilizes all covariates, µ∗
γ,0 might be rank deficient,

especially when cells are based on one-dimensional projections of the data. For instance,

in the previous scenario, consider γl = {x ∈ X : c′x ∈ [al−1, al]} for l = 1, . . . , L, and

c = (c1, · · · , cdx). Then, it holds that, r(µ∗
γ,0) < dθ whenever cl = ck for some k ̸= l, or

cl = 0 for some l.

16



In the Monte Carlo simulations of Section 7 and the empirical illustration of Section 8,

the data is partitioned using the following three covariate-based methods: SEB on the first

principal component of X (PCS), SEB on the vector of fitted values (FS), and k-means

clustering on X (KM). The former methods use a one-dimensional projections of the

data and might be problematic for the implementation of the χ̂2 test. The SEB on fitted

values has the additional advantage of exploiting the dependence between the residuals

and the fitted values under the alternative to generate large aggregate squared residuals.

The k-means algorithm, on the other hand, partitions by maximizing the between-cluster

distance, and should be less affected by the rank deficiency of µ∗
γ,0.

4.2 Neyman-Pearson (NP) Classes

Frequently, the researcher’s primary concern is rejecting a subset of deviations critical

for the application at hand. For instance, when estimating Mincer’s earning regression,

it is common to compare it with alternative specifications of the log-income profile (e.g.

Polachek et al. 2008). Similarly, in the Cox (1972) model, a parsimonious paramet-

ric specification of the baseline hazard is often compared to more flexible models (e.g.

Seetharaman and Chintagunta 2003).

In this case, a procedure that splits the data where the deviations from the null

toward the alternative hypothesis are the largest is preferable. To this end, consider the

construction of Neyman-Pearson (NP) classes built over the intersection points between

the null and the alternative specification. These classes, in the probability distribution

model checking literature, increase (or even maximize) Pearson’s measure of discrepancy

between the null and the alternative hypothesis (see Remark 3.3 in Balakrishnan, Voinov,

and Nikulin 2013).

Let H1 be a given alternative parametric specification of the regression function,

H1 : m ∈ M1

with M1 = {m1,θ∗(·) : θ∗ ∈ Θ∗} being a family of parametric regression functions and

Θ∗ ⊂ Rdθ∗ a suitable parameter space. Thus, under H1, m1,θ∗0
(X) = m(X) a.s. for some

θ∗0 ∈ Θ∗. Neyman-Pearson classes partition the data splitting over the points where the
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models under H0 and under H1 meet, i.e. where m1,θ̃∗(·) = mθ̃(·) a.s., with θ̃∗ = θ∗0+op(1)

under H1 and θ̃ the corresponding consistent estimator of θ0 under H0. By doing so, the

difference between the average prediction under the null and the alternative model in each

class is the largest possible, making it easier to detect deviations from the null toward H1.

If X is a univariate variable, finding the intersection set, {x ∈ X : m1,θ̃∗(x)−mθ̃(x) =

0}, and dividing the data accordingly is a straightforward process. However, when X

is multivariate, the intersection set includes surfaces, and splitting X across different

dimensions becomes significantly more complex. In line with the original proposal of

Balakrishnan, Voinov, and Nikulin (2013), rather than dividing the data at these inter-

sections, X is partitioned into two classes based on whether the difference between the

models is greater or less than zero.

γ̂1 = {x ∈ X : m1,θ̃∗(x)−mθ̃(x) > 0},

γ̂2 = {x ∈ X : m1,θ̃∗(x)−mθ̃(x) ≤ 0},

Notice that, if the alternative model is correctly specified, i.e. E [Y |X] = m1,θ∗0
(X) a.s.

for some θ∗0 ∈ Θ∗, then γ̂1 is the set of points in X where the null model underestimates

the regression function, and γ̂2 is the set of points in X where the null model overestimates

the regression function. In this case, χ2 tests with NP classes detect deviations of the

type,

H1(γ) : E [(m1,θ∗(X)−mθ(X)) Iγl(X)] ̸= 0 for some l ∈ {1, 2} and for all θ ∈ Θ.

where γ1 = {x ∈ X : m1,θ̃∗(x) −mθ(x) > 0} and γ2 = {x ∈ X : m1,θ̃∗(x) −mθ(x) ≤ 0}.

That is, if the alternative model is correct, χ2 tests with Neyman-Pearson classes are

capable of detecting any deviations from it, at least asymptotically.

It is convenient to further divide the data into additional cells to enhance the power

of the tests and, ensuring L > dθ, perform the J test. This is done by employing one of

the covariate-based procedures discussed above - PCS, FS, or KM - to split each of the

preliminary two-cell partitions into L/2 cells.

Algorithm 1 (Parametric Neyman-Pearson (PNP) Algorithm)
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(0) Fix a number of cells, L, and a minimum number of observations in each cell, nmin.

(1) Compute the fitted values under the null {mθ̃(Xi)}ni=1.

(2) Compute the fitted values under the alternative {m1,θ̃∗(Xi)}ni=1.

(3) Split the data into two cells, γ̂1 and γ̂2, where γ̂1 = {x ∈ X : m1,θ̃∗ − mθ̃(x) > 0}

and γ̂2 = {x ∈ X : m1,θ̃∗ −mθ̃(x) ≤ 0}.

(4) If L > 2, split the largest and smallest cells into ⌈L/2⌉ and ⌊L/2⌋ cells, respectively,

by applying one of the following methods: PCS, FS, or KM.

This is not the only solution to determine additional splits. The key point for the NP

procedure is that, in each cell, the differences between the two models have the same sign.

Once this is granted, the two-cell NP partition can be split with any other procedure.

Example 2 (PNP Classes)

Consider the same scenario as in Example 1, but now under a composite hypothesis,

where the model parameters are unknown both under the null hypothesis and under the

alternative. After obtaining the OLS estimates for both the null and alternative models,

the Neyman-Pearson critical regions are defined based on the points x ∈ X where the

equation (θ̃00 − θ̃∗00) + (θ̃01 − θ̃∗01)x− θ̃∗02 sin (50x/2π) = 0 holds. The resulting partition is

depicted in Figure 2.

4.3 Flexible Neyman-Pearson (FNP) Classes

When considering the unrestricted alternative, Neyman-Pearson classes correspond to

subsets of points where the model under the null hypothesis consistently overestimates and

underestimates the (unknown) true regression model. In other words, these classes help

us distinguish situations where m(x) is bigger or smaller than mθ0(x), which characterize

the alternative scenario.

Additionally, differences between the parametric model and the regression function

become evident when we examine how the parametric residual relates to various function

of the covariates vector, such as the model fitted values. This connection is harnessed

with the adoption of a structured alternative ”index” model of the form E [εθ0(Z)|X] =
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Figure 2: Neyman-Pearson classes with parametric estimate of the regres-
sion function. The data is generated under H1 (black line) with
θ∗ = (1, 1, 1). The green line depicts the points where the es-
timates under the null (blue line) and the estimates under the
alternative (red line) meet.

f(mθ0(X)) a.s., for some θ0 ∈ Θ, where f(·) represents an unknown smooth function (see,

e.g., Han, Ma, Ren, and Wang 2023 for a similar approach). Consequently, under the

null hypothesis, the regression error is independent in mean from the assumed regression

function, i.e. E [εθ0(Z)|mθ0(X)] = 0. In contrast, under the alternative hypothesis, a

systematic dependence in the means of the errors emerges.

This motivates the adoption of an auxiliary regression of εθ0(Z) on a fixed-order poly-

nomial expansion of the fitted values,

εθ̃(Zi) = β0 +

q∑
j=1

βjmθ̃(Xi)
j + ϵi,

and use it to split where the predicted residuals are greater or smaller than zero. The

procedure consists of using the auxiliary model

MBP =
{
β0 + β1mθ̃(x) + β2mθ̃(x)

2 + · · ·+ βqmθ̃(x)
q : β ∈ B ⊂ Rq

}
,

to split the sample. Denote as β̃ = (β̃1, · · · , β̃q) the OLS estimates of β. Under the null
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Figure 3: Residual-Fitted values scatter plot under the null (left panel)
and under the alternative (right panel). Data generated using
the model in (28) under homoskedasticity, a = 0, with c = 0
(left panel) and c = 50 (right panel).

hypothesis, θ̃ = θ0+op(1), and β̃0 = β̃1 = · · · = β̃q = op(1), implying that the fitted values

do not have predictive power over the residuals. Under the structured alternative, some

of the estimated coefficients converge to a non-zero limit, and the fitted values exhibit

predictive power on the residuals. The dependence, then, is used to split cases based

on the predicted residuals to generate cells with residuals of the same sign and, thus,

larger aggregate residuals. Tests built with these partitions can be seen as a formalization

of the statistical practice of looking at the residual-fitted values scatter plot to capture

model mispecification and heteroskedasticity (e.g., Cook 1994). Remarkably, when mθ(x)

is linear, the auxiliary regression consists of the artificial regression used in the Ramsey

(1969) RESET test for goodness-of-fit of the linear regression model.

Algorithm 2 (Flexible Neyman-Pearson (FNP) Algorithm)

(0) Fix a number of cells, L, and a minimum number of observations in each cell, nmin.

(1) Compute the fitted values under the null {mθ̃(Xi)}ni=1 and obtain the residuals,

{εθ̃(Zi)}ni=1.

(2) Perform an auxiliary regression of εθ̃(Zi) on a fixed-order polynomial expansion of
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the fitted values and obtain the vector of predicted residuals, {ε̂θ̃(Zi)}ni=1.

(3) Split the data into two cells, γ̂1 and γ̂2, where γ̂1 = {x ∈ X : ε̂θ̃(x) > 0} and

γ̂2 = {x ∈ X : ε̂θ̃(x) ≤ 0}.

(4) If L > 2, split the largest and smallest cells into ⌈L/2⌉ and ⌊L/2⌋ cells, respectively,

by applying one of the following methods: PCS, FS, or KM.

4.4 Convergence of NP Classes

I examine the conditions under which NP (PNP and FNP) partitions converge to fixed

cells in D. The validity of Assumption 4 for NP partitions may not be immediately

apparent, considering that the splitting points in this case are determined through the

comparison of different estimators of the regression function. However, as discussed below,

a significant class of NP partitions converges to fixed cells in D.

First, consider the following setting, where the null hypothesis is given byH0 : m(X) =

θ′0X a.s., for some θ0 ∈ Rdx , whereas the alternative of interest is H1 : m(X) = θ∗
′

0 X +

θ∗1f(X) a.s., for some (θ∗0, θ
∗
1) ∈ Rdx+1, with f : Rdx → R being a known function of the

regressors. Parametric NP partitions are constructed around the points where the two

models fit are equal; that is,

x ∈ X : x′(θ̃0 − θ̃∗0) = f(x)θ̃∗1,

where θ̃0 is the OLS estimator of Y on X, and (θ̃∗0, θ̃
∗
1) is the OLS estimator of Y on

X̃ = (X, f(X)). This is equivalent to stating that the set of solutions, x0, satisfies

x′
0(θ̃0 − θ̃∗0) = f(x0)θ̃

∗
1.

Working out the OLS algebra, we obtain the following representations under H0,

√
n(θ̃0 − θ̃∗0) = An

1√
n

n∑
i=1

X̃iei,

√
nθ̃∗1 = Bn

1√
n

n∑
i=1

X̃iei,
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where An = d−1
n

[
A1,n A2,n

]
, Bn = d−1

n

[
1 A′

1,n

]
, and,

A1,n =

(
1

n

n∑
i=1

XiX
′
i

)−1(
1

n

n∑
i=1

Xif(Xi)

)
,

A2,n = −
(
1

n

n∑
i=1

XiX
′
i

)(
1

n

n∑
i=1

f(Xi)X
′
i

)(
1

n

n∑
i=1

Xif(Xi)

)(
1

n

n∑
i=1

XiX
′
i

)−1

,

dn =

(
1

n

n∑
i=1

f(Xi)
2

)
−
(
1

n

n∑
i=1

f(Xi)X
′
i

)(
1

n

n∑
i=1

f(Xi)X
′
i

)−1(
1

n

n∑
i=1

Xif(Xi)

)
.

It follows that the set of splitting points is given by the solutions of the following equation,

(x′An − f(x)Bn)
1√
n

n∑
i=1

X̃iei = 0,

which holds for any x0 ∈ X such that x′
0An = f(x0)Bn. Thus, x0 converge in probability

to the fixed solutions of x′
0A = f(x0)B, where A and B are the probability limits of An

and Bn, respectively.

Thus, even when the partition depends on the comparison of estimated parameters, the

splitting points can converge to fixed points in X . The following proposition generalizes

this result by incorporating specific conditions on the behavior of the parameter estimators

under the null and alternative hypotheses to ensure the convergence of NP classes.

Proposition 1 Let M = {mθ(·) : θ ∈ Θ} and M1 = {m1,θ∗(·) : θ∗ ∈ Θ∗} represent

the models under H0 and H1, respectively. Further, denote with θ̃ and θ̃∗ the respective
√
n-consistent estimators of θ0 and θ∗0 under H0 and H1, where mθ0 = m a.s. under H0,

and m1,θ∗0
= m a.s. under H1. Then, if under H0:

(a) There exists a pseudo-parameter θ̄∗, such that θ̃∗
p−→ θ̄∗ under H0.

(b) mθ0 = m1,θ̄∗ a.s.

(c)
√
n(θ̃−θ0) = Cn−1/2

∑n
i=1 h(Xi, εθ0)+op(1),

√
n(θ̃∗−θ∗1) = Dn−1/2

∑n
i=1 h(Xi, εθ0)+

op(1), where C and D are c × dh and d × dh constant matrices, and h(·, ·) is some

Rdh-valued function of regressors and errors such that n−1/2
∑n

i=1 h(Xi, εθ0) = Op(1).
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Then, the NP partition splitting points converge in probability to fixed points in X .

The most crucial conditions for the convergence to fixed cells are Conditions (a) and

(b), which require that the model under the alternative encompasses the model under

the null hypothesis. These conditions are typically satisfied in the context of both PNP

partitions and FNP partitions. In the case of FNP partitions this is particularly easy to

check, as the alternative regression model corresponds to a polynomial expansion of the

fitted values, thus nesting the model under the null.

In the appendix, I provide Monte Carlo evidence demonstrating NP partitions con-

verging to fixed cells in D.

5 Local Power

To analyze the local power of the χ2 tests under the alternative hypothesis, let’s consider

the following sequence of local alternatives,

H1,n : m(x) = mθ0(x) +
1√
n
h(x) a.s., (18)

where h(X) is a random variable representing departures from the null hypothesis with

E [h(X)2] < ∞ and 0 ≤ P (h(X) = 0) < 1.

Denote as δγ = (δ1, . . . , δL), with δl = E [h(X)Iγl(X)] for l = 1, . . . , L. Under H1,n

and θ0 known, the test statistics converge to a noncentral chi-squared distribution with

L degrees of freedom,

χ̂2

γ̂,0

d−→ χ2
L

(
λ
)
, (19)

Ŵγ̂(θ0)
d−→ χ2

L

(
λ
)
,

where,

λ = δ′γ(Σγ,0)
−1δγ (20)

is the non-centrality parameter.

Equations (19) and (20) highlight an important trade-off when choosing L. On one
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hand, the inequality,
δ2l
σ2
0,l

+
δ2f
σ2
0,f

≥ (δl + δf )
2

σ2
0,l + σ2

0,f

,

shows that λ is non-decreasing for nested partitions. That is, as the partition becomes

finer with more cells, the test becomes more capable of detecting smaller deviations from

the null hypothesis, resulting in increased power. On the other hand, the (global) power of

χ2 tests under the alternative hypothesis H1,n decreases as the number of cells increases.

This decline in power is due to the higher variability of the limit distribution in (19)

associated with a larger number of cells. As the number of cells grows, the distribution

becomes more spread out, leading to a higher chance of observing test statistics falling in

less extreme regions and, thus, not rejecting. Similar trade-offs have already been noted

in the classical goodness-of-fit testing literature (see, e.g., Kallenberg, Oosterhoff, and

Schriever 1985).

When θ0 is unknown, under H1,n, the estimators of θ0 typically follow the asymptotic

expansion in Assumption 3’ below (see, e.g., Newey 1985).

Assumption 3’ Under H1,n, the estimator θ̃ satisfies,

√
n(θ̃ − θ0) =

1√
n

n∑
i=1

lθ0(Zi) + δ + op(1)

where the function lθ(·) is as defined in Assumption 3 and δ ∈ Rdθ is a non-zero vector.

It’s easy to show, for instance, that Assumption 3’ is satisfied by the grouped GMM

estimator, with

δ = −
[
µ∗

γ,0(Σγ,0)
−1µ∗′

γ,0

]−1

µ∗
γ,0(Σγ,0)

−1δγ .

It follows that under H1,n and the same assumption of Theorem 2,

χ̂2

γ̂

d−→ χ2
L−dθ

(
λ1

)
, (21)

Ŵγ̂(θ̃)
d−→ χ2

r(Avar(Φ̂γ (θ̃)))

(
λ2

)
,
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where

λ1 = δ′γ

[
(Σγ,0)

−1 − (Σγ,0)
−1µ∗

γ,0

(
µ∗′

γ,0(Σγ,0)
−1µ∗

γ,0

)−1
µ∗′

γ,0(Σγ,0)
−1
]
δγ (22)

λ2 =
(
δγ − µ∗

γ,0δ
)′
Avar−(Φ̂γ(θ̃))

(
δγ − µ∗

γ,0δ
)

(23)

are the respective non-centrality parameters. Comparing the power of these two tests

is not a straightforward task, given the differences in both degrees of freedom and non-

centrality parameters in their respective distributions. In fact, scenarios can be con-

structed where the χ̂2 test exhibits greater power than the Wald test, and vice versa,

reasoning as Moore and Spruill (1975) and Moore (1977), for the classical case.

Instead of the non-centrality parameters, consider now the squared L2 norm of the

drift,

||δγ ||22 = δ′γδγ =
L∑
l=1

δ2l =
L∑
l=1

E [h(X)Iγl(X)]2 .

Then, for any pair of δl and δf such that sgn(δl) = sgn(δf ), the inequality (δl+δf )
2 ≥ δ2l +δ2f

shows that the optimal partitioning for ||δγ ||22 consists of two cells: one containing the

points where h(·) =
√
n (m(·)−mθ0(·)) takes only positive values, and the other where it

takes only negative values. Essentially, the optimal partitioning of ||δγ ||22 is achieved with

two Neyman-Pearson classes.

Proposition 2 The euclidean norm of the drifts, ||δγ ||2, is maximized by two Neyman-

Pearson classes, γ∗ = {γ∗
i }2i=1,

γ∗
1 = {x ∈ X : h(x) ≥ 0} γ∗

2 = {x ∈ X : h(x) < 0}

This suggests that, in some sense, Neyman-Pearson classes correspond to optimization

criteria for the non-centrality parameter. Of course, a rigorous argument to justify effi-

ciency should account for the dependence of the non-centrality parameter denominators

on the cell boundaries.
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6 General CMR

The analysis is extended to general moment restrictions with the introduction of a re-

sponse variables vector, Y , taking values in Y ⊂ Rdy , dy ≥ 1, and a generalized residual

vector (Wooldridge 1990), εθ : (Y ,X ) −→ Rdε with εθ(·) = (ε1,θ(·), ..., εdε,θ(·))′, defining

parametric relationships between Y and X. The null hypothesis is defined as before, i.e.

H0 : E [εθ0|X] = 0 a.s. for some θ0 ∈ Θ.

The generality of this framework allows testing for a wide range of econometric models

such as simultaneous equation model identified by instrumental variables (Newey 1990)

or nonlinear in parameters and endogenous variables models, e.g. Box-Cox transform.

When the dimension of the generalized residual is bigger than one, it might be optimal

to consider a partition for each component of εθ(·). In particular, for each j ∈ {1, ..., dε},

let Dj be a class of partitions of X comprised of Lj sets from C (Lj is fixed for all n);

that is,

Dj =
{
γj = (γj,1, ..., γj,Lj

)′ ∈ CLj : ∪Lj

l=1γj,l = X , γj,l ∩ γj,f = ∅, ∀l ̸= f
}
. (24)

The partition corresponding to the j-th component of the generalized residual is an ele-

ment of Dj, γj ∈ Dj, or a random element γ̂j ∈ Dj, with probability limit γj ∈ Dj.

Denote as Eθ(·) the L̄ × L̄ block diagonal matrix of generalized residuals with main

diagonal elements given by {εj,θ(·)ILj
}dεj=1, where L̄ =

∑
j Lj. If L1 = L2 = · · · = Ldε = L,

then Eθ(·) = diag[εθ(·)] ⊗ IL, where diag[εθ(·)] = diag{ε1,θ(·), ..., εdε,θ(·)} is the dε × dε

diagonal matrix with the components of εθ(·) on the main diagonal and ⊗ denotes the

Kronecker product.

The χ2 test statistics can be expressed as quadratic forms of

Φ̂γ(θ) =
1√
n

n∑
i=1

Eθ(Zi)Iγ(Xi), (25)

where Iγ(·) = (I′γ1
, ..., I′γdε

)′ is the vector of indicator functions over all the partitions.

While the covariance matrices of Φ̂γ(θ0) and Φ̂γ(θ̃) under the null are given by,

Σγ,0 = E [Eθ0(Z)Iγ(X)Iγ(X)′Eθ0(Z)′] , (26)
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and,

Avar
(
Φ̂γ(θ̃)

)
= Σγ,0 − µ∗

γ,0C
′
γ,0 − Cγ,0µ

∗′
γ,0 + µ∗

γ,0L0µ
∗′
γ,0, (27)

where µ∗
γ,0 = E [∇Eθ0(Z)Iγ(X)] is the Jacobian matrix, C ′

γ,0 = E [Eθ0(Z)Iγ(X)lθ0(Z)
′],

and L0 is defined as before.

In general, Σγ,0 is not diagonal, unless εθ(·) consists of orthogonal components or

dε = 1. However, when γ1 = γ2 = . . . = γdε , Σγ,0 is block diagonal with L blocks of size

dε × dε corresponding to the covariance matrix of εθ(·) in each cell of the partition.

7 Monte Carlo Study

This section presents a Monte Carlo study to evaluate the finite sample performance of

χ2 tests for testing the null hypothesis of linearity within a regression model. To establish

a benchmark for comparison with existing tests for H0, the χ2 tests are compared with

those proposed by Stute (1997) and Stute and Zhu (2002) for regression specifications

based on marked residuals processes.

The data generating process (DGP) is given by,

Yi =
dx∑
j=1

Xj,i + b sin

(
c
∑dx

j=1Xj,i

2π

)
+ σ(Xi)ϵi (28)

where Xi = (X1,i, ..., Xdx,i) is a vector of mutually independent covariates distributed

uniformly over [0,1], Xi,j ∼ U [0, 1], the error distributes normally and independently

from X, ϵ|X ∼ N(0, 1),

σ2(X) =
g(X)

E[g(X, a)]
,

and g(X, a) = eaX1 , with E[σ2(X)] = 1. The model under the null corresponds to b = 0,

while for the alternative models b = 0.5. The parameter a controls the heteroskedasticity

severity, with a = 0 corresponding to homoskedasticity, while c governs the extent of

departures from linearity. In the first part of the simulations, I provide evidence for the

size of the test for a ∈ {0, 3}, I then fix a = 3 and proceeds to examine the tests power

for c ∈ {10, 50}. Notably, with c = 50, the deviations manifest at higher frequencies

making them more challenging to discern from sampling error. The generated samples
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have size n ∈ {100, 200, 500, 1000} with a dimension of the covariate vector dx ∈ {5, 10}.

The number of Monte Carlo repetition, R, is set at R = 3000 for all sample sizes. The

rejection rates are reported at the 5% nominal level, results at 1% and 10% are similar.

The χ̂2 test is built as described in Section 2 using the GMM estimator,

θ̂γ =

[
L∑
l=1

X̄lX̄
′
l

σ̂2
l (θ̃)

]−1 L∑
l=1

X̄lȲl

σ̂2
l (θ̃)

.

where θ̃ is the OLS estimator. Given the data-generating process, one can easily show

that the influence function of θ̃, lθ0(z) = E [XX ′]−1 xεθ0(z), and εθ0(z)Iγ(x) have linearly

independent components (however, the independence may not hold when X includes a

constant term). Thus, Avar
(
Φ̂γ(θ̃)

)
, is full rank and the Wald test can be implemented

using the plug-in estimator Ŵγ(θ̃),

Ŵγ(θ̃) = En
[
εθ̃(Zi)

2Iγ(Xi)Iγ(Xi)
′]− En [Iγ(Xi)X

′
i]En [XiX

′
i]
−1 En

[
εθ̃(Zi)

2XiIγ(Xi)
′]−

− En
[
εθ̃(Zi)

2Iγ(Xi)X
′
i

]
En [XiX

′
i]
−1 En [XiIγ(Xi)

′] +

+ En [Iγ(Xi)X
′
i]En [XiX

′
i]
−1 En

[
εθ̃(Zi)

2XiX
′
i

]
En [XiX

′
i]
−1 En [XiIγ(Xi)

′] .

I assess the test’s performance using the model-based partitioning methods described

in Section 4. For both Parametric NP (PNP) classes and Flexible NP (FNP) classes, the

division into L cells of the initial two-cell partition is done using SEB on the first principal

component (PCS), SEB on the vector of fitted values (FS), and K-means clustering

(KM). When dx = 5, the partitioning is done using L ∈ {4, 6, 8} cells for the Wald test

and L∗ ∈ {9, 11, 13} for the J test, whereas when dx = 10, partitions with L ∈ {8, 10, 12}

and L∗ ∈ {18, 20, 22} cells are examined. Notice that L∗ is selected to ensure that the

limit null distribution of the two χ2 tests is the same, enabling a fair comparison between

them.

The parametric PNP cells are constructed using the correctly specified alternative

model (with known parameter c). These tests exploit additional information about the

alternative specifications of the regression function. Including them allows for a compre-

hensive comparison with the other feasible partitioning methods. The FNP partition is

created using predictions of a regression of parametric residuals on a polynomial expansion
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of the fitted values with order q = 3.

The performance of the χ2 tests are compared with two minimum-distance tests for

regression specifications based on marked residuals processes indexed by real vectors and

real numbers; cf. Stute (1997) and Stute and Zhu (2002), respectively.

R1,n(x1) =
1√
n

n∑
i=1

(
Yi −X ′

i θ̃
)
I{Xi ≤ x1}, x1 ∈ Rdx

R2,n(x2) =
1√
n

n∑
i=1

(
Yi −X ′

i θ̃
)
I{X ′

i θ̃ ≤ x2}, x1 ∈ R.

Incidentally, the marked residual process indexed by partitions generated with the FS

method,

Φ̂γ̂l(θ̃) = n−1/2

n∑
i=1

εθ̃(Zi)I{X ′
i θ̃ ∈ Cl},

where γ̂l = {x ∈ X : x′θ̃ ∈ Cl} and
⋃L

l=1 Cl = R, is a finite cells version of the process

used in the Stute and Zhu (2002) test. The test statistics consist of a functional of R1,n(·)

and R2,n(·). In these simulations, we only consider the Kolmogorov-Smirnov functional,

KS1 = sup
x1∈Rdx

|R1,n(x1)|,

KS2 = sup
x2∈R

|R2,n(x2)|.

Since these tests have non-pivotal limiting distribution, the critical values are estimated

with Wild bootstrap (see Stute, Manteiga, and Quindimil 1998) using B = 999 bootstrap

repetitions for each replication.

The simulation results for the linear model, as presented in Tables 1 (size) and 2

(power), reveal several key findings. In Table 1, both Ŵ and χ̂2 tests generally exhibit

excellent size accuracy. Some relatively small size distortions of the J test occur when

the sample size is small and the number of cells large; however, they get better as the

sample size increases. Notably, the KS1 test experiences pronounced size distortions

when dx = 10, while the KS2 test demonstrates greater robustness under higher covariate

dimensions, as expected.

Turning to Table 2, our focus shifts to assessing the tests’ ability to detect deviations
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Table 1: Linear Model: Size (b = 0)

PCS FS KM

FNP PNP FNP PNP FNP PNP

n dx a L L∗ Ŵ χ̂2 Ŵ χ̂2 Ŵ χ̂2 Ŵ χ̂2 Ŵ χ̂2 Ŵ χ̂2 KS1 KS2

100 5 0 4 9 6.70 7.13 4.66 4.73 6.30 5.26 5.13 5.20 7.06 6.43 4.56 4.43 5.14 6.40

6 11 6.10 6.10 4.23 4.26 5.00 4.90 4.46 4.70 6.30 4.39 3.90 4.06

8 13 5.40 4.53 4.26 4.03 4.53 4.30 3.63 3.86 4.50 4.13 4.36 3.73

100 5 3 4 9 5.80 6.60 4.30 4.10 5.33 4.76 4.36 4.73 5.80 6.13 4.53 5.03 4.86 7.12

6 11 4.80 4.43 4.03 3.90 4.56 3.80 4.39 4.33 5.13 5.00 4.46 3.46

8 13 4.53 5.06 3.26 3.83 4.16 3.63 3.56 3.23 4.46 4.13 3.70 3.50

100 10 0 8 18 6.23 5.53 5.53 5.06 6.23 5.06 5.33 6.03 7.03 5.46 5.33 4.70 1.46 8.14

10 20 5.30 5.73 5.53 4.83 5.33 4.56 5.03 4.16 6.13 4.53 5.33 3.96

12 22 5.23 5.06 4.03 3.93 4.50 4.33 4.39 4.66 5.09 3.70 4.03 3.36

100 10 3 8 18 5.86 5.26 3.86 4.03 5.26 4.63 5.13 4.33 5.50 4.53 4.16 3.90 0.78 9.16

10 20 4.46 3.70 3.50 3.80 3.73 4.20 3.59 4.03 4.56 3.36 4.10 3.20

12 22 3.73 3.86 3.30 3.59 3.26 3.10 3.20 2.29 4.16 3.80 3.23 2.90

200 5 0 4 9 6.90 7.13 5.13 4.70 6.90 5.13 5.46 4.73 7.00 6.66 5.23 4.50 5.56 6.75

6 11 6.03 6.80 4.20 5.03 5.26 4.73 5.46 4.53 5.70 5.33 4.30 4.80

8 13 5.00 6.13 4.73 4.50 5.00 4.66 4.56 4.70 5.00 5.63 4.63 4.53

200 5 3 4 9 6.53 6.80 4.93 4.46 6.60 5.13 4.96 4.39 6.63 6.36 5.06 4.23 5.56 6.56

6 11 5.20 6.03 4.70 3.90 5.13 5.09 4.63 4.59 6.20 6.03 4.20 4.43

8 13 4.70 4.96 4.39 3.86 3.93 4.13 4.16 3.73 4.76 4.39 3.86 3.96

200 10 0 8 18 6.53 6.36 5.33 4.96 6.56 5.53 5.40 4.90 6.73 6.33 5.60 4.86 2.80 6.60

10 20 6.53 6.30 4.50 4.96 5.00 4.93 4.63 4.50 5.86 5.13 4.93 3.90

12 22 5.20 5.93 5.23 4.73 4.76 4.23 3.96 4.43 5.33 5.23 4.86 4.46

200 10 3 8 18 5.83 5.93 4.50 4.43 5.16 5.09 4.36 4.26 5.76 6.00 5.03 3.76 1.40 6.04

10 20 5.20 4.63 4.66 4.13 4.39 4.73 4.30 4.70 5.23 5.03 4.66 4.33

12 22 5.09 4.90 4.50 4.06 4.26 4.43 4.00 4.50 5.60 4.13 4.26 4.63

500 5 0 4 9 7.36 7.83 5.73 4.86 6.56 5.93 5.33 5.00 7.13 7.43 5.30 4.96 6.40 7.28

6 11 6.46 7.30 5.00 4.86 5.96 5.46 5.13 4.23 6.53 6.00 5.16 5.26

8 13 5.76 5.63 5.09 5.36 4.46 5.46 4.50 5.53 5.76 6.26 4.30 4.20

500 5 3 4 9 6.16 7.10 4.86 5.33 5.73 5.09 4.93 5.46 7.03 6.46 4.36 4.76 5.76 5.84

6 11 5.66 5.96 4.83 5.46 6.36 4.70 5.46 5.26 5.70 5.93 4.33 4.90

8 13 5.23 5.86 4.36 4.20 4.83 4.76 4.23 4.33 5.86 5.53 4.39 4.20

500 10 0 8 18 6.80 5.70 5.50 4.80 4.66 4.59 5.60 5.26 6.96 6.03 5.63 4.66 4.32 6.32

10 20 5.13 6.63 4.50 5.40 5.60 4.93 4.90 5.56 6.20 5.86 4.46 4.70

12 22 6.50 6.16 5.00 4.63 5.73 5.33 5.00 5.20 6.00 5.26 4.70 4.86

500 10 3 8 18 5.73 5.36 4.26 5.56 4.63 5.16 4.36 5.06 5.53 5.23 5.16 5.00 3.20 5.60

10 20 5.09 6.30 4.96 4.46 5.16 4.66 4.96 4.56 5.33 4.73 4.96 4.56

12 22 5.53 4.96 4.26 5.13 5.20 5.13 5.36 4.80 5.06 4.80 5.26 3.59

1000 5 0 4 9 7.10 7.46 4.23 5.06 6.56 5.56 5.53 5.53 6.36 7.43 4.53 5.53 3.40 5.92

6 11 6.70 5.90 4.80 5.13 5.09 5.40 5.00 5.70 5.46 5.00 4.33 4.86

8 13 5.83 6.33 4.80 4.76 5.70 5.03 5.40 4.36 5.76 5.56 4.56 5.23

1000 5 3 4 9 6.63 7.50 4.86 4.93 6.46 5.76 4.93 4.76 6.73 6.53 4.46 5.00 3.55 7.11

6 11 5.43 6.43 4.36 5.06 5.40 5.33 5.40 5.30 6.13 5.63 3.93 5.09

8 13 5.13 6.80 4.80 4.30 5.40 5.40 5.06 5.46 4.90 6.06 4.23 4.43

1000 10 0 8 18 5.90 6.60 5.23 4.90 5.80 6.10 5.06 5.43 5.80 6.43 5.86 4.56 6.37 4.88

10 20 5.03 5.63 5.03 4.73 5.50 4.59 4.80 5.33 4.96 6.03 4.70 5.30

12 22 5.30 6.13 5.03 5.03 4.26 5.06 4.93 5.00 5.00 5.80 5.36 4.86

1000 10 3 8 18 5.86 5.66 4.56 5.06 5.50 4.53 4.66 5.26 5.93 6.16 5.43 5.46 6.22 5.62

10 20 5.53 6.03 5.30 5.16 5.16 5.40 4.90 4.13 5.00 6.13 4.56 4.56

12 22 6.03 5.09 4.70 4.80 5.09 5.23 5.30 5.30 6.10 5.36 4.83 4.86

Percentage of rejections at the nominal level α = 0.05 of the χ̂2 and the
Wald test under different partitioning methods. n, dx, a, L, and L∗ denote
the sample size, the number of covariates, the degree of heteroskedasticity,
and the number of cells of the Wald and J test, respectively. The last two
columns report the rejection rates of the Kolmogorov-Smirnov tests.
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Table 2: Linear Model: Power (b ̸= 0)

PCS FS KM

FNP PNP FNP PNP FNP PNP

n dx a L L∗ Ŵ χ̂2 Ŵ χ̂2 Ŵ χ̂2 Ŵ χ̂2 Ŵ χ̂2 Ŵ χ̂2 KS1 KS2

100 5 10 4 9 46.6 22.4 43.6 29.3 46.8 19.7 46.0 33.8 46.1 39.7 41.9 39.6 31.5 35.8

6 11 37.8 19.3 37.5 25.4 37.7 18.8 38.6 29.7 38.6 33.6 34.5 33.9

8 13 32.5 18.3 29.7 20.0 33.1 16.6 33.1 24.5 32.5 27.2 31.4 27.5

100 5 50 4 9 7.4 7.9 74.0 56.9 8.5 7.8 72.2 52.3 7.9 7.4 74.2 73.2 5.2 8.0

6 11 5.6 6.4 65.5 51.9 7.4 7.4 65.1 50.8 5.7 6.0 69.0 68.3

8 13 4.8 4.2 59.0 47.2 6.9 6.9 56.1 46.2 5.0 5.3 61.6 61.3

100 10 10 8 18 28.4 14.1 41.8 28.6 30.2 15.4 40.8 27.9 28.4 22.6 41.9 37.3 1.6 28.2

10 20 22.4 12.9 36.3 25.6 22.9 15.0 34.8 25.6 23.7 18.6 36.1 33.1

12 22 19.6 11.2 31.0 21.3 20.4 12.7 29.0 21.7 19.9 16.1 31.1 26.8

100 10 50 8 18 5.7 5.5 53.0 38.7 5.9 4.6 53.7 36.9 5.5 5.5 57.1 53.2 0.7 8.6

10 20 5.5 4.9 49.0 35.7 4.6 4.9 46.4 33.6 5.7 4.1 50.7 47.4

12 22 4.6 4.2 41.7 30.5 4.1 3.6 40.6 30.7 4.6 3.6 45.3 41.4

200 5 10 4 9 80.7 43.2 78.5 57.7 81.8 36.4 80.5 64.5 77.7 73.3 75.2 74.3 59.8 65.1

6 11 76.3 44.3 76.1 54.5 79.4 38.6 79.5 61.4 76.1 69.5 72.8 71.4

8 13 70.2 41.8 71.3 51.3 72.9 41.4 74.0 60.3 70.1 65.5 67.7 66.6

200 5 50 4 9 10.0 9.0 97.3 87.0 17.2 19.7 97.2 84.0 9.3 9.7 97.3 97.3 5.0 10.2

6 11 8.2 8.9 95.9 86.2 19.3 21.5 95.1 87.2 9.2 8.6 96.5 96.7

8 13 8.7 8.1 94.1 85.4 22.4 22.9 93.1 87.1 8.0 7.6 94.8 96.5

200 10 10 8 18 69.4 40.1 81.5 65.2 74.0 43.7 81.5 64.9 70.3 65.5 80.4 79.2 4.0 50.4

10 20 64.1 38.6 79.1 61.1 69.8 41.8 78.2 62.3 63.5 60.1 78.0 75.3

12 22 61.3 36.6 76.0 59.9 67.9 39.6 75.6 61.0 62.3 57.0 75.3 73.5

200 10 50 8 18 5.6 5.4 92.1 73.6 7.6 7.3 91.8 72.9 5.2 5.7 93.1 92.4 1.4 7.4

10 20 5.0 5.6 88.9 72.8 7.8 7.0 87.9 73.6 6.1 5.3 90.6 90.1

12 22 4.8 4.6 87.1 72.0 8.4 6.6 86.2 71.7 5.3 4.8 89.4 87.3

500 5 10 4 9 99.7 78.9 99.7 94.1 99.8 69.4 99.7 94.6 99.5 98.8 99.4 99.3 94.7 98.2

6 11 99.7 82.2 99.8 94.9 99.9 77.5 99.8 96.3 99.4 98.9 99.3 99.1

8 13 99.1 83.8 99.4 95.6 99.5 81.6 99.5 97.5 99.2 99.0 99.2 99.2

500 5 50 4 9 24.3 17.5 100 99.0 52.7 63.5 100 98.4 22.0 18.6 100 100 5.4 19.6

6 11 22.8 19.9 100 99.6 66.4 72.4 100 99.6 20.7 17.0 100 100

8 13 26.4 19.4 100 99.7 82.5 77.5 100 99.8 18.8 14.6 100 100

500 10 10 8 18 99.8 84.8 99.9 97.6 99.9 87.5 99.9 97.3 99.6 99.6 100 99.9 17.5 94.4

10 20 99.7 87.1 99.9 97.9 99.8 89.1 99.9 97.9 99.6 99.5 99.9 99.8

12 22 99.5 88.6 99.8 97.6 99.9 90.8 99.9 98.1 99.4 99.6 99.8 99.8

500 10 50 8 18 8.1 6.8 100 98.9 36.0 35.1 99.9 98.7 7.9 6.7 100 99.9 4.4 10.0

10 20 8.4 7.2 100 99.1 44.3 39.1 99.9 99.1 8.9 6.4 100 100

12 22 7.9 6.8 100 99.2 49.2 38.9 99.9 99.3 8.2 6.7 100 100

1000 5 10 4 9 100 94.8 100 99.4 100 87.5 100 99.2 100 100 100 100 99.9 100

6 11 100 97.8 100 99.8 100 94.1 100 99.9 100 99.9 100 100

8 13 100 97.9 100 99.9 100 96.4 100 100 100 100 100 100

1000 5 50 4 9 46.5 37.0 100 99.9 81.1 91.0 100 99.5 40.9 33.4 100 100 4.6 45.0

6 11 47.4 42.0 100 99.9 92.5 96.6 100 99.9 40.7 33.0 100 100

8 13 53.9 42.4 100 99.9 99.7 98.4 100 100 40.1 29.1 100 100

1000 10 10 8 18 100 98.2 100 99.9 100 98.4 100 99.9 100 100 100 100 37.9 100

10 20 100 99.3 100 100 100 99.3 100 100 100 100 100 100

12 22 100 99.5 100 99.9 100 99.4 100 100 100 100 100 100

1000 10 50 8 18 15.2 11.3 100 99.9 83.2 84.2 100 99.9 17.2 11.3 100 100

10 20 17.6 12.5 100 99.9 91.2 87.4 100 99.9 17.3 11.5 100 100

12 22 16.5 11.7 100 100 96.2 90.3 100 100 16.0 11.1 100 100 4.3 20.0

Percentage of rejections at the nominal level α = 0.05 of the χ̂2 and the
Wald test under different partitioning methods. n, dx, a, L, and L∗ denote
the sample size, the number of covariates, the degree of heteroskedasticity,
and the number of cells of the Wald and J test, respectively. The last two
columns report the rejection rates of the Kolmogorov-Smirnov tests.
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from linearity when the null hypothesis is false (b = 0.5). The Ŵ test generally exhibits

higher power compared to the χ̂2 test, especially in cases with larger values of c. However,

this difference varies depending on the choice of the partitioning method. For example,

under PNP partitioning with k-means, the two tests perform the same. The χ2 tests

outperform the omnibus tests when the split into L cells of the initial two-cell partition is

done with the FS method, particularly against high-frequency deviations (c = 50). When

the additional splits are done using one of the other two methods, the performance varies.

As expected, both χ2 tests using PNP partitions consistently exhibit the highest

power across all scenarios, given their ability to leverage out-of-sample information. In

this case, the performance of the χ2 tests is similar across the different covariate-based

partitioning methods.

8 Empirical Application

I present an empirical application of the testing procedures, analyzing the impact of

attending Historically Black Colleges and Universities (HBCU) versus Traditional White

Institutions (TWI) on the labor and educational outcomes of African American students,

based on Fryer and Greenstone (2010). As discussed by Price and Viceisza (2023), HBCU

play a pivotal role in enhancing the identity, confidence, and self-esteem of students,

particularly black individuals. These institutions have higher ratios of black students,

making it easier for students to foster a sense of belonging. HBCU also offer innovative

programs, such as college preparation summer programs and Black-centered curricula,

encouraging students to actively engage in academic experiences.

The question of whether HBCU are more effective than TWI for the academic and

economic achievement of black students holds significant policy implications. HBCU have

relied heavily on federal funds, and despite the recent commitment by the US administra-

tion to invest over 7 billion dollars in HBCU1, they have consistently faced underfunding

compared to TWI. This financial disparity can significantly impact the quality of edu-

cation provided by HBCU, potentially limiting opportunities for their students. Thus,

1https://www.ed.gov/news/press-releases/fact-sheet-biden-harris-adminis
tration-highlights-record-championing-historically-black-colleges-and-unive
rsities-hbcus
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the suggestion of merging HBCU with other institutions or redirecting resources toward

existing TWI could lead to a more efficient and cost-effective higher education system.

The analysis is based on the National Longitudinal Survey of the High School Class

of 1972 (NLS) used by Fryer and Greenstone (2010), which is publicly available on

OpenICPSR2. The survey is a nationally representative sample of 23,451 high school

seniors in 1972, with follow-up interviews conducted in 1973, 1974, 1976, 1979, and 1986.

This dataset provides rich information concerning these students, including details about

their demographics, academic performance, and labor market outcomes.

The sample comprises 624 African American students who pursued higher education

after high school and were tracked throughout the 1972-1986 period. Among them, 260

attended an HBCU, while 364 attended a TWI. The considered outcomes include the

logarithm of hourly wage in 1986, the probability of attaining a bachelor’s degree, and

the probability of obtaining a graduate degree.

Table 3: Summary Statistics of Black Students (NLS)

HBCU TWI

Mean St. deviation NA Mean St. deviation NA

ln(wage) 2.16 0.64 57 2.11 0.51 71

Bachelor’s degree 0.67 0.46 0 0.62 0.48 2

Graduate degree 0.14 0.35 0 0.16 0.37 2

SAT 685.55 133.46 143 793.68 183.39 212

ACT 12.86 4.02 201 14.73 5.31 269

Hs GPA 3.20 1.19 27 3.24 1.33 19

Family income 3.45 2.50 59 3.89 2.70 75

Father education 1.71 0.96 4 1.96 1.16 9

Mother education 1.95 1.08 3 2.08 1.11 4

Private high school 0.03 0.17 0 0.05 0.23 0

Female 0.66 0.47 0 0.64 0.47 0

South 0.87 0.33 0 0.48 0.50 0

The table report mean, standard deviation, and number of missing values
of the outcomes and characteristics of African American who attended
college. The columns HBCU and TWI refer to the type of college attended.
In the first three rows, the outcomes are the logarithm of hourly wage in
1986, the probability of receiving a bachelor’s degree, and the probability
of enrolling in graduate school. The remaining rows report the covariates.
The total sample size is n = 624, with n1 = 260 students enrolled in
HBCU, and n2 = 364 in TWI.

Following Fryer and Greenstone (2010), I examine a set of covariates, encompassing

home environment variables and pre-college characteristics. The former includes family

2Ann Arbor, MI: Inter-university Consortium for Political and Social Research, 2019-10-12.
https://doi.org/10.3886/E113736V1
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income, mother’s and father’s education, and two dummy variables indicating the stu-

dent’s sex and residence in the south. The latter comprises SAT and ACT scores, high

school GPA, and attendance at a private school. Unlike Fryer and Greenstone (2010), I

neither categorize the covariates nor replace missing values with 0s. Instead, I address

missing values through multivariate imputation by chained equations (Van Buuren and

Groothuis-Oudshoorn 2011).

The identification of the enrollment effect in an HBCU on outcomes relies on two sets

of assumptions. First, I estimate the wage effect under the assumption of conditional mean

independence (CMIA) for potential outcomes. Next, I estimate the effect on all outcomes

under the unconfoundedness framework (see, e.g., Rosenbaum and Rubin 1983), where

potential outcomes are assumed to be conditionally independent of treatment status.

Let Yi = Yi(1)Di + Yi(0)(1 − Di), where Yi(1) and Yi(0) are the potential outcomes

under treatment and control, respectively, and Di is a binary variable indicating whether

the respondent attended an HBCU. In the CMIA framework, the following assumptions

allow the identification of the average treatment effect (ATE).

Assumption 6 CMIA

(a) E [Y (j)|D,X] = E [Y (j)|X] for j ∈ {0, 1}.

(b) E[Y (j)|X] = E[Y (j)] +mθ0(X) for some θ0 ∈ Θ and j ∈ {0, 1}.

Assumption 6 (a) states that once we condition on the set of characteristics, the choice

of enrolling in an HBCU is, on average, random. While Assumption 6 (b) supposes a

parametric specification of the potential outcomes regression and homogeneous treatment

effects among the two groups. Under this assumption, the ATE is identified as the pa-

rameter δ1 in the following regression:

E [Y |D,X] = δ0 + δ1D +mθ0(X).

I consider two different specifications of the potential outcomes regression model. The

first is a simple linear specification where, in addition to the listed covariates, a dummy

variable for family income above the third quartile, denoted as I{faminc > q3}, is added.

This additional covariate accommodates for the potential differential effect of a richer
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family background on the future wages of students. While the second is a nonlinear index

model of unknown order.

• Specification (A1): mθ(X) = θ′1X + θ2I{faminc > q3}.

• Specification (B1): mθ(X) = (|θ′1X + θ2I{faminc > q3}|)θ3 .

In the unconfoundedness framework, Assumption 6 is replaced by the following as-

sumptions.

Assumption 6’ (Yi(1), Yi(0)) ⊥⊥ Di|Xi and 0 < p(x) < 1 ∀x ∈ Rdx.

Here p(X) = P (D = 1|X) denotes the propensity score. Under Assumption 6’, the ATE

and the average treatment of treated (ATT) are identified (Rosenbaum 1987) by,

ATE = E
[(

D

p(X)
− 1−D

1− p(X)

)
Y

]
and ATT =

E
[(

D − p(X)(1−D)
1−p(X)

)
Y
]

E [D]
.

This motivates the following inverse probability weighting (IPW) estimators,

ÂTE =
1

n

n∑
i=1

(
w1(Zi)

w̄1(Zi)
− w0(Zi)

w̄0(Zi)

)
Yi and ÂTT =

1

n

n∑
i=1

(
wT

1 (Zi)

w̄T
1 (Zi)

− wT
0 (Zi)

w̄T
0 (Zi)

)
Yi,

where w1(Zi) = Di/p̂(Xi), w0(Zi) = (1 − Di)/(1 − p̂(Xi)), wT
1 (Zi) = Di, wT

0 (Zi) =

(1−Di)p̂(Xi)/(1−p̂(Xi)), and w̄d and w̄T
d are the sample means of wd and wT

d , respectively,

for d = 0, 1. The normalized weights reduce the variance and instability of the estimates

(Hirano, Imbens, and Ridder 2003).

The estimation of the propensity score is done by fitting a probit model, i.e., p(X) =

Φ(X ′θ0), where Φ(·) denotes the cumulative distribution function of the standard normal

distribution. I consider two different specifications of the propensity score model,

• Specification A2: X includes all the covariates listed in Table 3.

• Specification B2: X includes all the covariates listed in Table 3 and an interaction

between the variables ”south” and ”family income”.

Specification (B2) is more comprehensive and takes into account the varied effects on

family income for Southern students, given the prevalence of HBCUs in the area. This

implies reduced mobility costs for attendees.

36



To ensure the consistency of the estimated causal parameters, it is crucial to verify the

correct specification of the regression models. Table 4 below presents the χ̂2, the Wald test,

and omnibus tests for each of the two regression and propensity score specifications. Then,

Table 5 and 6 compare the ATE and ATT estimates obtained from these specifications

within the two causal frameworks.

Note that, under the null hypothesis for the probit model, the maximum likelihood

estimator (MLE) is the most efficient, and Avar
(
Φγ(θ̃)

)
= Σγ,0−µ∗

γ,0I−1µ∗′
γ,0 is positive

definite. Here µ∗
γ,0 = E [ϕ(X ′θ0)Iγ(X)X ′], ϕ(x) is the density of the standard normal at

x, and, I = E [ϕ(X ′θ0)
2XX ′/Φ(X ′θ0)(1− Φ(X ′θ0))] is the Fisher information matrix.

The PNP partitions are built using the opposite specification as reference, while FNP

partition uses a polynomial expansion of the fitted values of order q = 3. Additional splits

of the initial two-cell partition are performed using the fitted values (FS) for the Wald

test and k-means (KM) for the J test.

The comparison is done with the Kolmogorov-Smirnov test statistics of Stute and

Zhu (2002) and Sant’Anna and Song (2019) (SS) for the regression model and for the

propensity score specifications, respectively. Both omnibus tests are implemented using

B = 10, 000 bootstrap replications. Following common practice, the ATE and ATT are

estimated from the subsample of observations with estimated propensity score outside of

the [0.05, 0.95] interval (Crump, Hotz, Imbens, and Mitnik 2009).

The results reported in Table 4 suggest that specification (A1) is more suitable for

modeling the true regression model than the polynomial specification (B1). This is par-

ticularly evident from the J tests with FNP cells, which frequently reject the correct

specification of model (B1) at relatively low significance levels. The test proposed by

Stute and Zhu (2002) is unable to detect deviations from the null hypothesis in both

cases, although the test statistic in specification (A1) is significantly larger than in (B1).

On the other hand, specification (B2) is not rejected at the 9% significance level,

suggesting a better fit for the propensity score model than specification (A2). Even in

this case, the omnibus test does not detect any significant mispecification for the two

models.
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Table 4: Regression and Pscore Specification Tests

(Regression)

FNP PNP

Spec. L L∗ Ŵ χ̂2 Ŵ χ̂2 KS2

(A1) 2 14 0.68 0.87 0.20 0.59 0.97

4 16 0.89 0.94 0.52 0.27

6 18 0.53 0.56 0.39 0.41

8 20 0.36 0.61 0.67 0.44

10 22 0.36 0.59 0.35 0.31

(B1) 2 15 0.80 0.03 0.05 0.20 0.25

4 17 0.96 0.04 0.50 0.21

6 19 0.86 0.06 0.26 0.57

8 21 0.94 0.17 0.56 0.15

10 23 0.95 0.05 0.50 0.16

(PScore)

FNP PNP

Spec. L L∗ Ŵ χ̂2 Ŵ χ̂2 SS

(A2) 2 12 0.50 0.81 0.26 · 0.29

4 14 0.06 0.78 0.53 ·
6 16 0.02 0.66 0.26 0.29

8 18 0.17 0.85 0.36 0.37

10 20 0.47 0.30 0.34 ·
(B2) 2 13 0.09 0.80 0.94 0.62 0.37

4 15 0.30 0.97 0.86 0.84

6 17 0.38 0.99 0.89 ·
8 19 0.39 0.58 0.29 0.86

10 21 0.17 0.74 0.56 0.58

The table reports p-values of the χ̂2 and the Wald test, under FNP and
PNP, for the null hypothesis of correct specification for the regression and
propensity score models. L and L∗ denote the number of cells used for
the Wald and J test, respectively. Additional splits are done using the FS
algorithm for the Wald tests and KM for the χ̂2 test. The columns KS2
and SS report the p-values of the Kolmogorov-Smirnov statistics of Stute
and Zhu (2002) and Sant’Anna and Song (2019) tests, respectively. Tests
for which the estimated parameter reached the boundary of the parameter
space are not reported.

Table 5: Estimates of ATE on Wages Using Regressions

Specification (A1) Specification (B1)

ATE 12.96 8.14

Std. Error (5.57) (5.27)

Pr(> |t|) [0.02] [0.12]

The table reports estimates of the ATE for the the logarithm of hourly
wage in 1986 using two different specifications of the regression model.
Estimates and standard errors are multiplied by 100.

The estimated Average Treatment Effect (ATE) for wages, derived from the potential

outcomes regression model, is 50% larger than the estimate under specification (B1),

while the standard errors from both models are quite similar. The ATE for wages of the

IPW estimator using (B2) falls between the best and worst estimates from the regression

models. Notably, the estimated ATTs for all outcomes using the IPW estimator are

statistically negligible, suggesting homogeneous treatment effects across HBCU and TWI

students.

These findings are consistent with the results of Fryer and Greenstone (2010) and a

substantial portion of the literature on HBCUs (Price and Viceisza 2023), which identified

similar positive effects of HBCU attendance on the wages of black students and the

likelihood of obtaining a college degree.
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Table 6: ATE and ATT Estimates Using IPW Estimators

Specification (A2) Specification (B2)

ln(wage) Col. Degree Grad. Degree ln(wage) Col. Degree Grad. Degree

ATE 12.77 9.20 -0.43 10.25 8.75 -0.90

Std. Error (6.30) (4.73) (3.76) (6.12) (4.93) (3.63)

Pr(> |t|) [0.04] [0.05] [0.90] [0.09] [0.07] [0.80]

ATT 5.65 4.00 -0.43 5.29 3.98 -0.61

Std. Error (5.60) (4.94) (3.46) (5.64) (4.95) (3.56)

Pr(> |t|) [0.31] [0.41] [0.90] [0.34] [0.42] [0.86]

The table reports the IPW estimates of the ATE and ATT for the following
outcomes: the logarithm of hourly wage, the probability of obtaining a
bachelor’s degree, and the probability of obtaining a graduate degree.
Estimates and standard errors (in parentheses) are multiplied by 100, and
p-values are enclosed in brackets. The estimates are obtained by excluding
observations with a propensity score outside the interval [0.05, 0.95].

It is worth noticing that the validity of the unconfoundedness and CMIA assumptions

rely on the comprehensive inclusion of all relevant factors in the student’s decision-making

process regarding enrollment in an HBCU institution. When uncertainties surround the

validity of the independence assumptions, the estimates of ATE and ATT presented below

should be regarded as statistical associations rather than causal effects.

9 Conclusion

In conclusion, this article introduces a novel approach for validating the correct spec-

ification of conditional moment restriction (CMR) models, which are fundamental for

identifying and estimating causal relationships. The proposed method harnesses the well-

established chi-squared (χ2) tests, commonly used in classical goodness-of-fit contexts,

to goodness-of-fit checks for CMR specifications. Traditionally, CMR model checks have

been adapted from tests for the cumulative density function (CDF) based on functionals of

the standard empirical process (SEP), but these often exhibit limitations, especially when

dealing with high-dimensional data and high-frequency alternatives. The introduced χ2

tests, on the other hand, are distribution-free, do not necessitate complex bootstrapping

or smoothing techniques, and offer flexibility in partitioning the data to favor specific al-

ternative hypotheses. Thus, providing a valid complementary instruments to the existing

model checking procedures. Monte Carlo simulations and empirical evidence highlight

the effectiveness of these χ2 tests, especially in scenarios involving a large number of
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covariates. The empirical analysis demonstrates the practical application of these tests

in assessing the returns of attending historically black colleges and universities (HBCU)

for black students in the United States. The results suggest that, in line with the liter-

ature, HBCU are more effective than traditional white institutions (TWI) in advancing

the economic and academic success of black students.
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A Appendix A

A.1 Lemmas

I first state auxiliary lemmas for the propositions and theorems in the main text. Let //

denote weak convergence on l∞(D) (see definition 13.3 in Van Der Vaart 1996, hereafter

VW), where l∞(D) is the space of all real-valued functions that are uniformly bounded on

D, and −→d denote convergence of real-valued random variables. Troughout, to highlight

the dependency on the partition, denote as Φ̂θ(γ) = Φ̂γ(θ) and Φ̂0(γ) = Φ̂γ(θ0).

Lemma 1 Under the null H0,

(a) if Assumption 1, 2, and 2’ hold, then Σγ(θ̃) = Σγ,0 + op(1).

(b) if Assumption 1, 2, 3 hold, and Avar
(
Φ̂γ(θ̃)

)
is p.d., then Ŵγ(θ̃) = Avar

(
Φ̂γ(θ̃)

)
+

op(1)

Lemma 2 Under the null hypothesis H0, Assumptions 1, and 5,

Φ̂0(·) // Φ0(·) as a process on l∞(D),

where Φ0(·) is an RL-valued Gaussian process with zero mean vector and covariance struc-

ture given by,

E [Φ0(γ)Φ0(γ̃)] = E
[
εθ0(Z)

2Iγ(X)Iγ̃(X)′
]

∀γ, γ̃ ∈ D.

Lemma 3 Under the null hypothesis H0, and Assumptions 1-5, it holds that:

(a) supγ∈D

∣∣∣Φ̂θ̃(γ)− (Φ̂0(γ)− µ̂∗′
γ (θ0)

√
n(θ̂ − θ0))

∣∣∣ = op(1).

(b) µ̂∗
γ̂(θ0) = µ∗

γ,0 + op(1).

Lemma 4 Under the null H0, and Assumptions 4,5,

(a) if Assumption 1, 2, and 2’ hold, then Σγ̂(θ̃) = Σγ,0 + op(1).

(b) if Assumption 1, 2, 3 hold, and Avar
(
Φ̂γ(θ̃)

)
is p.d., then Ŵγ̂(θ̃) = Avar

(
Φ̂γ(θ̃)

)
+

op(1)
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A.2 Proofs

For any class of functions F , denote as {Pnf : f ∈ F} the empirical measure indexed by F ,

such that Pnf = n−1
∑

f(Zi); alike, Pf denotes the population measure, Pf =
∫
f(Z)dP .

We say that a class of functions is: i) Glivenko-Cantelli for P (hereafter, P -GC) whenever

supf∈F |Pn−P |f = op(1); ii) P -Donsker if {
√
n(Pn−P )f : f ∈ F} converge in distribution

to a tight random element in the space l∞(F). Throughout, we refer to both classes of

sets with finite VC dimension and classes of functions with finite VC subgraph dimension

as VC classes. These classes, having uniformly bounded covering numbers (Theorem

2.6.7 in VW), are Glivenko-Cantelli and Donsker (see Theorem 2.4.3 and 2.5.2 in VW)

for any probability measure on the sample space, provided that they have integrable and

square-integrable envelope function, respectively.

Proof of Lemma 1. For the first part of the Lemma, by the weak law of large numbers

(WLLN) and a mean value theorem argument (MVT), suffices to show that

1

n

n∑
i=1

(
ε2
θ̃
(Zi)− ε2θ0(Zi)

)
Iγl(Xi) = I + II + III = op(1)

for each l ∈ 1, 2, ..., L, where,

I = (θ̃ − θ0)
′ 1

n

n∑
i=1

∇mθ̄(Xi)∇mθ̄(Xi)
′Iγl(Xi)(θ̂ − θ0),

II =
2

n

n∑
i=1

mθ0(Xi)∇mθ̄(Xi)
′Iγl(Xi)(θ̃ − θ0),

III =
2

n

n∑
i=1

Yi(mθ̃(Xi)−mθ0(Xi))Iγl(Xi),

and |θ̄ − θ0| ≤ |θ̃ − θ0|. The triangle inequality, Assumption 2, and the consistency of

θ̃ show that, |I| ≤ d2θ

∥∥∥θ̃ − θ0

∥∥∥2 n−1
n∑

i=1

R(Xi)
2 = op(1), where ∥·∥ denotes the euclidean
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norm. By a similar reasoning,

|II| ≤ dθ

∥∥∥θ̃ − θ0

∥∥∥ 2

n

n∑
i=1

mθ0(Xi)R(Xi)

≤ dθ

∥∥∥θ̃ − θ0

∥∥∥ (E [Y 2
])1/2 (E [R(X)2

])1/2
+ op(1) = op(1)

where the last inequality follows from the WLLN, the law of iterated expectation, and

Cauchy-Schwarz inequality. Finally, after expanding again around θ0 it is easy to see that

|III| ≤ dθ

∥∥∥θ̃ − θ0

∥∥∥ 2n−1
∑n

i=1 YiR(Xi)Iγl(Xi) = op(1).

For the second part of the lemma, we need to show that L̂(θ̃) = L0 + op(1), Ĉγ(θ̃) =

Cγ,0+ op(1), and µ̂∗
γ(θ̃) = µ∗

γ,0+ op(1). By the usual MVT argument and the law of large

numbers,

Ln = L0 + I + II + II ′ + op(1)

with,

∥I∥ =

∥∥∥∥∥ 1n
n∑

i=1

∇lθ̄(Zi)
(
θ̂ − θ0

)(
θ̂ − θ0

)′
∇lθ̄(Zi)

′

∥∥∥∥∥ ≤ d4θ

∥∥∥θ̂ − θ0

∥∥∥2 1

n

n∑
i=1

R2
2(Zi) = op(1),

∥II∥ =

∥∥∥∥∥ 1n
n∑

i=1

∇lθ̄(Zi)
(
θ̂ − θ0

)
l′θ0(Zi)

∥∥∥∥∥ ≤ d2θ

∥∥∥θ̂ − θ0

∥∥∥ 1

n

n∑
i=1

∥lθ0(Zi)∥R2(Zi)

≤ d2θ

∥∥∥θ̂ − θ0

∥∥∥( 1

n

n∑
i=1

∥lθ0(Zi)∥2
)1/2(

1

n

n∑
i=1

R2
2(Zi)

)1/2

= op(1).

Alike, we write Ĉγ(θ̃) as,

Ĉγ(θ̃) = I − II − III + Cγ,0 + op(1),
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where,

I =
1

n

n∑
i=1

lθ0(Zi)∇mθ̄(Xi)
′(θ̂ − θ0)Iγ(Xi)

′

II =
1

n

n∑
i=1

∇lθ̄(Zi)
′(θ̂ − θ0)εθ0(Zi)Iγ(Xi)

′

III =
1

n

n∑
i=1

∇lθ̄(Zi)(θ̂ − θ0)(θ̂ − θ0)
′∇mθ̄(Xi)Iγ(Xi)

′

By Assumptions 2, and 3,

∥I∥ ≤
∥∥∥θ̂ − θ0

∥∥∥ 1

n

n∑
i=1

∥lθ0(Zi)∥ ∥∇mθ̄(Xi)∥ ∥Iγ(Xi)∥

≤
√
L
∥∥∥θ̂ − θ0

∥∥∥( 1

n

n∑
i=1

∥lθ0(Zi)∥2
)1/2(

1

n

n∑
i=1

R2(Xi)

)1/2

= op(1),

An analogous reasoning shows that ∥II∥ = op(1), and,

∥III∥ ≤
∥∥∥θ̂ − θ0

∥∥∥2 1

n

n∑
i=1

∥∇lθ̄(Zi)∥ ∥∇mθ̄(Xi)∥ ∥Iγ(Xi)∥

≤
√
Ld3θ

∥∥∥θ̂ − θ0

∥∥∥2( 1

n

n∑
i=1

R2(Xi)

)1/2(
1

n

n∑
i=1

R2
2(Zi)

)1/2

= op(1).

Finally, µ̂∗
γ(θ̃) = µ∗

γ,0 + op(1) follows from the proof of Lemma 3 below.

Proof of Lemma 2. By Lemma 2.6.17 in VW and Assumption 5, both D and {Iγ(x) :

γ ∈ D} are VC classes. Therefore, F = {εθ0(z)Iγ(x) : γ ∈ D} is a VC class (Lemma 2.6.18

in VW), with square integrable envelope function F = |εθ0|, and, hence, is P -Donsker.

The convergence of the finite-dimensional distributions (fidis) of Φ̂0(·) to those of Φ0(·),

by the multivariate central limit theorem, characterize the limit process.

Proof of Lemma 3. By an MVT argument,

Φ̂θ̂(γ) = Φ̂0(γ)− I ′
√
n(θ̂ − θ0)− µ̂∗′

γ (θ0)
√
n(θ̂ − θ0)
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where,

I = µ̂∗
γ(θ̄)− µ̂∗

γ(θ0) =
1

n

n∑
i=1

(
∇mθ̄(Xi)−∇mθ0(Xi)

)
Iγ(Xi)

′

and |θ̄− θ0| ≤ |θ̃− θ0|. The class {∇mθ(x) : θ ∈ Θ} is a collection of continuous mapping,

θ −→ ∇mθ, over the compact metric space Θ with integrable envelope function R(·) and,

therefore, is P -GC (e.g., Example 19.8 in Van der Vaart 2000). Thus,

sup
γ∈D

∥I∥ ≤ sup
γ∈D

1

n

n∑
i=1

∥∇mθ̄(Xi)−∇mθ0(Xi)∥ ∥Iγ(Xi)∥

≤
√
L
1

n

n∑
i=1

∥∇mθ̄(Xi)−∇mθ0(Xi)∥ = op(1).

where the last equality follows from an application of the uniform law of large numbers

(e.g., Davidson 1994, Theorem 21.6). For the second part of the Lemma is sufficient to

prove that,

|II| =

∣∣∣∣∣ 1n
n∑

i=1

∇(j)mθ0(Xi)
(
Iγ̂(Xi)− Iγ(Xi)

)∣∣∣∣∣ = op(1),

for each j ∈ {1, .., dθ}. To see this is true, notice that by Assumption 5, D∆D = {γ1∆γ2 :

γ1,γ2 ∈ D} is a class of subsets of unions of VC classes, and hence is VC. Therefore,

{|∇(j)mθ0(x)|Iγ̃(x) : γ̃ ∈ D∆D} is also VC with integrable envelope R(·) and, hence,

P -GC. Thus, for each j ∈ {1, .., dθ},

|II| ≤ 1

n

n∑
i=1

|∇(j)mθ0(Xi)|Iγ̂∆γ(Xi)

≤ sup
γ̃∈D∆D

(Pn − P )|∇(j)mθ0|Iγ̃ + E [|∇(j)mθ0(X)|Iγ̂∆γ(X)]

= op(1) + µR(γ̂∆γ) = op(1)

where µR(γ̂∆γ) =
(
µR(γ̂1∆γ1), ..., µR(γ̂L∆γL)

)′
, and µR(A) =

∫
A
R(X)dP is a (signed)

measure absolutely continuous with respect to P . The last equality follows from Assump-

tion 4.
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Proof of Lemma 4. For each element on the main diagonal of Σ̂γ̂(θ̃)− Σ̂γ(θ̃) write,

1

n

n∑
i=1

εθ̂(Zi)
2(Iγ̂l(Xi)− Iγl(Xi)) = I + II + III

where

I =
1

n

n∑
i=1

εθ0(Zi)
2(Iγ̂l(Xi)− Iγl(Xi))

II = (θ̂ − θ0)
′ 1

n

n∑
i=1

∇mθ̄(Xi)∇mθ̄(Xi)
′(Iγ̂l(Xi)− Iγl(Xi))(θ̂ − θ0)

III = −(θ̂ − θ0)
′ 2

n

n∑
i=1

εθ0(Zi)∇mθ̄(Xi)(Iγ̂l(Xi)− Iγl(Xi))

The class {εθ0(z)2Iγ̃l : γ̃ ∈ C∆C} is VC with integrable envelope function ε2θ0 and, hence,

is P -GC. Therefore, |I| ≤ µσ(γ̂l∆γl) + op(1) = op(1), by Assumption 4. Also, |II| ≤
√
Ld2θ

∥∥∥θ̂ − θ0

∥∥∥2 n−1
∑n

i=1R(Xi)
2 = op(1), by Assumptions 1-2 and the consistency of θ̂,

and |III| ≤
√
Ldθ

∥∥∥θ̂ − θ0

∥∥∥n−1
∑n

i=1 εθ0R(Xi) = op(1) by Cauchy-Schwarz inequality.

Thus, Σ̂γ̂(θ̃) = Σ̂γ(θ̃) + op(1), and the first part of the lemma follows from Lemma 1(a).

For the second part of the lemma, notice that by Lemma 3(b) (and the proof of the

first part of Lemma 3), µ̂∗
γ̂(θ̂) = µ∗

γ,0 + op(1), and for each element of Cn(γ̂) − Cn(γ0) it

holds that,

1

n

n∑
i=1

εθ̂(Zi)lθ̂,j(Iγ̂l(Xi)− Iγl(Xi)) ≤

(
1

n

n∑
i=1

εθ̂(Zi)
2Iγ̂l∆γl(Xi)

)1/2(
1

n

n∑
i=1

lθ̂,j

)1/2

= op(1)Op(1),

where lθ,j denotes the j-th component of lθ and the last equality follows from the first

part of this proof and Lemma 1.

Proof of Theorem 1. The consistency of the grouped GMM estimator follows from

supθ∈Θ |Qn(θ) − Q0(θ)| = op(1), where Q0(θ) = E [εθ(Z)Iγ(X)]′ (Σγ,0)
−1E [εθ(Z)Iγ(X)]

and Qn(θ) = n−1χ̂2

γ̂,θ̃(θ) (see Theorem 2.1 in Newey and McFadden 1994, for instance).

46



To see that the condition holds, notice that,

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εθ(Zi)Iγ̂(Xi)− E [εθ(Z)Iγ(X)]

∣∣∣∣∣ ≤ sup
θ∈Θ

|I|+ sup
θ∈Θ

|II|+ sup
θ∈Θ

|III|

where

I = (Pn − P )εθIγ ,

II =
1

n

n∑
i=1

εθ0(Zi)(Iγ̂(Xi)− Iγ(Xi)),

III =
1

n

n∑
i=1

[∇mθ̄(Zi)(Iγ̂(Xi)− Iγ(Xi))
′]
′
(θ − θ0).

The mapping θ −→ εθ is continuous over the compact Θ, with

E
[
sup
θ∈Θ

εθ(Z)

]
≤ E

[
sup
θ̄,θ∈Θ

εθ0(Z)−∇mθ̄(X)′(θ − θ0)

]
≤ dθE [R(Z)]D < ∞,

by Assumption 2 and the compactness of Θ, where D denotes the diameter of Θ. There-

fore, both {εθ(z) : θ ∈ Θ} and {εθ(z)Iγ(X) : θ ∈ Θ} are P -GC classes (see Corollary 8.6

in Giné and Zinn 1984, for instance) and, hence, supθ∈Θ |I| = op(1). Then, by Cauchy-

Schwarz inequality and Assumptions 1 and 4,

sup
θ∈Θ

|II| ≤

(
1

n

n∑
i=1

ε2θ0(Zi)

)1/2(
1

n

n∑
i=1

Iγ̂∆γ(Xi)

)1/2

= op(1).

Finally,

sup
θ∈Θ

∥III∥ ≤ sup
θ∈Θ

1

n

n∑
i=1

∥Iγ̂∆γ(Xi)∥ ∥∇mθ̄(Xi)∥ ∥θ − θ0∥

≤ dθD
1

n

n∑
i=1

∥Iγ̂∆γ(Xi)∥R(Xi) = op(1),

where the second inequality follows from Assumption 2 and the compactness of Θ. This

result, together with the consistency of Σ̂γ̂(θ̃) implies that supθ∈Θ |Qn(θ)−Q0(θ)| = op(1)

and, therefore, θ̂γ̂ = θ0 + op(1). For the asymptotic normality: by Assumptions 2 and
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1(c), the first-order conditions of the minimization problem are satisfied with probability

approaching one, µ̂∗
γ̂(θ̂γ)Σ̂γ̂(θ̃)

−1n−1/2Φ̂γ̂(θ̂γ) = 0. Expanding Φ̂γ̂(θ̂γ) around θ0 and

solving gives the Bahadur representation,

√
n(θ̂γ − θ0) = −

[
µ̂∗

γ̂(θ̂γ)Σ̂γ̂(θ̃)
−1µ̂∗′

γ̂ (θ̄)
]−1

µ̂∗
γ̂(θ̂γ)Σ̂γ̂(θ̃)

−1Φ̂0(γ̂)

where |θ̄ − θ0| ≤ |θ̂γ̂ − θ0|.

From the proof of Lemma 3, it follows that µ̂∗
γ̂(θ) − µ̂∗

γ̂(θ0) = op(1) for any θ −→
p

θ0.

Thus by consistency of θ̂γ̂ and Lemma 1(b), it follows that both µ̂∗
γ̂(θ̂γ) and µ̂∗

γ̂(θ̄) converge

in probability to µ∗
γ,0. Finally, by Assumptions 4-5, and the uniform continuity of the

sample paths of Φ0(·),

Φ0(γ̂)
d−→ N (0,Σγ,0) .

The result follows by Slutsky’s lemma.

Proof of Theorem 2. By Lemma 3, 4, and Assumption 3 (or Theorem 1 and Assump-

tion 2’ for the χ̂2 tests) both test statistics are asymptotically equivalent to the following

quadratic form,

q(θ̂,W, γ̂) =
(
Φ0(γ̂)−

√
nµ∗′

γ,0l̄θ0

)′
W−1

(
Φ0(γ̂)−

√
nµ∗

γ,0l̄θ0
)
, (A1)

where l̄θ0 = n−1
∑n

i=1 lθ0(Zi) and W−1 is the probability limit of the weighting matrix

W−1
n . In particular, the couple (θ̂,W−1

n ) is equal to (θ̂γ̂ , Σ̂γ̂(θ̃)) in the χ̂2 test and(
θ̃, Âvar−

(
Φ̂γ(θ̃)

))
in the Wald test. The functional

ϕ(z, w, γ) =
(
z(γ)− µ∗′

γ,0w
)′
W−1

(
z(γ)− µ∗′

γ,0w
)
,

mapping (Φ̂0(·),
√
nl̄θ0 , γ̂) into q(θ̂,W, γ̂) is continuous with respect to the product topol-

ogy on l∞(D) × RL × D (see Lemma 4 in Andrews 1988a). Thus, Theorem 2 follows by

establishing the limit null distribution of (Φ0(γ̂) − µ∗′
γ,0

√
nl̄θ0) and an application of the

continuous mapping theorem (e.g., Theorem 1.3.6 in VW). Lemma 2, Assumptions 1, 4,

5, and the central limit theorem imply that (Φ0(·),
√
nl̄θ0 , γ̂) is a uniformly tight process
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on D with fidis converging weakly to those of (Φ0(·), l0, γ0), where l0
d
= N(0, L0) and

E [l0Φ0(γ)] = E [lθ0(Z)εθ0(Z)Iγ(X)′]. Thus,

(Φ̂0(·),
√
nl̄, γ̂) // (Φ0(·), l0, γ0) on l∞(D),

and by the continuous mapping theorem,

q(θ̂,W, γ̂)
d−→ Ỹ ′W−1Ỹ ,

where Ỹ
d
= N(0,ΣỸ ) and ΣỸ = Avar

(
Φ̂γ(θ̂)

)
. In the Wald test, where W−1 is a

generalized inverse of ΣỸ , Ỹ
′W−1Ỹ

d
= χ2

r(Avar(Φ̂γ(θ̃)))
by Theorem 7.3(i) in Rao and Mitra

(1972). In the χ̂2 test, W = Σγ,0, and ΣỸ = Avar
(
Φ̂γ(θ̂γ̂)

)
= Σγ,0 − µ∗′

γ (µ
∗
γΣ

−1
γ,0µ

∗′
γ )µ

∗
γ .

Since Var
(
Σ

−1/2
γ,0 Ỹ

)
= Σ

−1/2
γ,0 (ΣỸ )Σ

−1/2
γ,0 is idempotent with rank equal to L−dθ, it follows

that Ỹ ′W−1Ỹ = (Σ
−1/2
γ,0 Ỹ )′(Σ

−1/2
γ,0 Ỹ )

d
= χ2

L−dθ
, proving the theorem.

Proof of Proposition 1. By an MVT argument, for fixed x, one can rewrite the

difference between the two models fit as,

mθ0(x) + ∆mθ̄(x)(θ̃ − θ0) = m1,θ∗1
(x) + ∆m1,θ̄∗(x)(θ̃

∗ − θ∗1).

where |θ̄ − θ0| ≤ |θ̃ − θ0| and |θ̄∗ − θ∗1| ≤ |θ̃∗ − θ∗1|. Then using conditions (a) and (b) of

Proposition 2, we obtain, that the splitting points, x0, solve,

∆mθ̄(x0)Cn−1/2

n∑
i=1

g(Xi, εθ0)−∆m1,θ̄∗(x0)Dn−1/2

n∑
i=1

g(Xi, εθ0) + op(1) = 0,

and, thus,

∆mθ̄(x0)C −∆m1,θ̄∗(x0)D = op(1).

Proof of Proposition 2. Let

dγ(IL) = δ(γ)′δ(γ) =
L∑
l=1

δ2l =
L∑
l=1

E [h(X)Iγl(X)]2 .
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If h(x) > 0 (h(x) ≤ 0) for all x ∈ X , then δl ≥ 0 (δl ≤ 0) for all l = 1, 2, ..., L, and, since

(δl + δf )
2 ≥ (δ2l + δ2f ) for each δl, δf such that sign(δl) = sign(δf ), it follows that,

L∑
l=1

δ2l ≤

(
L∑
l=1

δl

)2

.

Thus, a unique cells maximize the drifts norm.

Consider, instead, the case h(x) = 0 for some x ∈ X , then for any finite split of X

with L > 1, we have that

δ2l + δ2f = (δ+l + δ−l )
2 + (δ+f + δ−f )

2 ≤ (δ+l + δ+f )
2 + (δ−l + δ−f )

2 = δ∗2l + δ∗2f ,

where δ+l and δ−l denote the positive and negative part of δl, respectively. Therefore, any

partition is dominated by a partition with the same number of cells obtained by merging

the positive and negative part of each δl into a new cell. Since the δ∗l are either non-

negative or non-positive, by merging them in two cells containing only the positive and

negative δ∗l we obtain a partition with two cells that dominates any partition with L > 1

cells. Of course, since

(δ+l + δ−l )
2 ≤ (δ+l )

2 + (δ−l )
2,

the two-cells partition dominates the one-cell partition as well. Thus, the two-cells parti-

tion into positive and negative values maximizes the drifts norm.

B Appendix B

B.1 Convergence of NP Cells: Simulations

I present Monte Carlo evidence demonstrating NP partitions converging to fixed cells

in D. In Figure 1, we generate data as Y = 1 + ε, where ε ∼ N(0, 1). Under the

null hypothesis, H0 : m(X) = c a.s., with c as a constant. The alternative model,

H1 : m(X) = c + βX a.s., includes a constant c and slope β, where X is generated as

X ∼ N(1, 1). In Figure 2, we create a linear model, Y = 1+X+ε, with ε ∼ N(0, 1). The

null hypothesis is H0 : m(X) = c + βX a.s., with c and β as constants. The alternative
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model, H1 : m(X) = c+βX+γX2 a.s., introduces a curvature term γ. I consider sample

sizes of n = 100, n = 1000, n = 10000, and n = 10000, to compute the splitting points

using the NP partition algorithm over R = 1000 replications. The results, depicted in

the figures below, align with theoretical findings, illustrating the convergence of splitting

points to fixed points in X .

Figure 4: Convergence of x0 for the constant model under linear alterna-
tive.

(a) n = 100 (b) n = 1000

(c) n = 10, 000 (d) n = 100, 000
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Figure 5: Convergence of x0 for the linear model under quadratic alter-
native. The first four graphs and the last four refer to the two
roots of the quadratic equation.

(a) n = 100 (b) n = 1000

(c) n = 10, 000 (d) n = 100, 000

(e) n = 100 (f) n = 1000

(g) n = 10, 000 (h) n = 100, 000
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