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Abstract

We propose inferences on the counterfactual mean: the mean of some population
outcome, pretending that the related characteristics are distributed according to
the distribution of another population. The purpose is to compare the mean of an
outcome in two populations, holding constant other related factors that may distort
the comparison. Once the data is partitioned into a number of classes, the counter-
factual mean outcome is identified as the weighted sum of the outcome conditional
expectation in one population, given that the related characteristics take values in
each class, with weights the probability that the characteristics take values in each
class in the other population. The relative counterfactual mean estimator follows by
the analogy principle. The procedure can be applied using data of any kind, with-
out specifying a model for the conditional expectation. The asymptotic properties
of the proposed estimator are unaffected when the partitions are data-dependent
with classes converging to a fixed limit. The main application of the procedure
consists of decomposing the difference between sample means into a composition
term, pretending that the conditional expectation functions are identical in each
population, and a residual term, pretending that the distribution of the related
characteristics in the two populations are identical. The proposed methodology is
applied to decompose the effects of the great recession on Spanish poverty indices.
The results suggest that differences in the distribution of characteristics over time,
resulting from labor market disruptions and demographic changes, were responsi-
ble for the increase in poverty rates. While job losses pushed the rates higher, the
out-migration of poor foreigners decreased the rates.
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1 Introduction

When comparing an outcome observed in two populations, it is necessary to hold related

factors constant to avoid distorting the comparison. For example, when comparing poverty

rates before and after the Great Recession, related characteristics such as race, household

composition, or age should be kept constant to prevent misleading conclusions. The

counterfactual distribution of the outcome in one population, pretending that the related

characteristics are distributed according to the distribution of another population, is a

key tool for making insightful comparisons.

The mean of the counterfactual distribution is typically identified by assuming a

model for the regression function, such as a parametric model (Oaxaca 1973 and Blinder

1973, hereafter OB), a semiparametric model (Machado and Mata 2005, Chernozhukov,

Fernández-Val, and Melly 2013), or a nonparametric model (DiNardo, Fortin, and Lemieux

1996 or Rothe 2010). Once a model for the regression, or the conditional distribution it-

self, is specified, the counterfactual mean is determined by the convolution between the

regression in one population and the marginal distribution of related characteristics in the

other population. Estimates of the counterfactual mean are the basis for decomposing

the difference between sample means into a compositional component, explained by the

difference between the marginal distributions of related characteristics in the two pop-

ulations, and a residual component, explained by the difference between the regression

functions.

When the data is grouped in a number of categories, as is the case when it is discrete,

there is no need to specify a regression model, as it has been noticed by Neison (1844),

Kitagawa (1955), or Ñopo (2008). The counterfactual mean, in this case, is the weighted

sum of the mean outcome in each category in one population, with weights the marginal

probability of each category in the other population.

Our proposal consists of partitioning the characteristics domain into a number of

classes. Thus, the counterfactual mean is the weighted sum of the conditional expec-

tation of the outcome in one population given that the characteristics belongs to each

class, with weights the probability that the characteristics take values in each class in the

other population. Consequently, the natural estimator of the counterfactual mean is the
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weighted sum of the conditional mean of the observed outcome in each class in one pop-

ulation, weighted by the relative frequencies of each class in the other population. This

approach can be implemented with any kind of data, without assuming a specification for

the regression function. Furthermore, the asymptotic distribution of the counterfactual

mean estimator accounts for data dependent partitions with the random cells converging

to fixed cells.

Formalizing this technique, Kitagawa (1955) proposed decomposing the difference be-

tween crude rates into composition and residual effects. Each effect, given by the difference

between the crude rate and the corresponding counterfactual rate, offers counterfactual

interpretations. The composition effect measures the difference that would have been

observed pretending that the populations solely differed in their characteristic distribu-

tions, while the residual effect represents the difference that would have been observed

pretending that the characteristic distributions in the two populations had been identical.

In economics, OB popularized the decomposition by analyzing male-female and white-

black wage gaps. In their model, the composition effect quantifies fair discrimination due

to different characteristics (e.g., higher education levels), while the residual effect gauges

the extent of discrimination in the market. Since then, the decomposition has found

extensive application in analyzing wage disparities across various demographic groups,

including gender (Oaxaca and Ransom 1999), race (Melly 2005), and comparisons be-

tween immigrants and residents (Chiquiar and Hanson 2005), to mention only a few.

Other applications include decomposing gender differences in smoking behavior (Bauer,

Göhlmann, and Sinning 2007), and poverty rates (Biewen and Jenkins 2005). Refer to

Fortin, Lemieux, and Firpo (2011) for a comprehensive review of decomposition applica-

tions in economics.

The estimation of the counterfactual mean relies on estimating the regression function,

typically achieved through a parametric specification of the true regression model. OB

employ ordinary least squares (OLS) to estimate the conditional mean wage given observed

characteristics, effectively assuming a linear regression model. Linearity allows for a

detailed decomposition, revealing the contribution of each characteristic to the two effects.

However, when the regression function is nonlinear, OB method is severely biased.

More flexible approaches rely on nonparametric estimates of the regression function,
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such as kernel regressions (Stock 1989), or manipulate a standardized feature of the out-

come distribution as a weighted average, paired with nonparametric estimates of the

weighting factor - see Barsky, Bound, Charles, and Lupton (2002) for the mean and

DiNardo, Fortin, and Lemieux (1996) for the entire distribution. Alternative methods

estimates the counterfactual cumulative density function (CDF) through a reweighting of

the conditional CDF estimates. Rothe (2010) use kernel estimates of the conditional CDF,

while Machado and Mata (2005) and Chernozhukov, Fernández-Val, and Melly (2013) ex-

plore various semiparametric specifications of the conditional CDF, such as quantile or

distributional regression models.

These decomposition, based on semiparametric and nonparametric specifications of

the regression function, do not necessarily return zero effects when the two populations

share the same empirical distribution. Detailed decompositions similar to OB are not

available for these methods, except for Machado and Mata (2005), which offers a detailed

decomposition of the residual component akin to OB. Furthermore, these methods are

not suitable for settings with non-ordinal characteristics and sparse data, as is the case,

for instance, in the literature on inequality of opportunity (see, e.g., Brunori, Peragine,

and Serlenga 2019) or poverty analysis (e.g., Bourguignon, Ferreira, and Leite 2008).

In the final section, we apply our methods to study the impact of the Great Reces-

sion on poverty indices in Spain. Our findings highlight compositional changes as the

main driver of shock effects, while residual effects are mostly negative, indicating poten-

tial reduction in post-recession poverty rates if no changes in composition had occurred.

A detailed analysis of the groups reveals labor market disruptions exacerbating crisis

consequences, while demographic changes and migratory movements alleviate recession

impacts.

The rest of the article is organized as follows. In Section 2, we introduce the notation

and in Section 3 we present the estimation method and discuss alternative grouping

procedures. Section 4 provides the asymptotic distribution of the estimator under minimal

regularity conditions and data dependent partitions. The application to the decomposition

of poverty indices before and after the great recession can be found in Section 6.
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2 Setting

We consider two populations, 1 and 0, and an outcome of interest distributed as the

random variables Y (1) and Y (0), respectively, in the two populations. The related charac-

teristics are distributed as the random vectors X(1) and X(0), with domains X (1) ⊂ Rp and

X (0) ⊂ Rp, for populations 1 and 0, respectively. The joint distribution of (Y (j), X(j)′)′ is

denoted by F
(j)
Y,X , j = 0, 1, which can be expressed as

F
(j)
Y,X(y, x) =

∫
{x̄≤x}

F
(j)
Y |X(y|x̄)F

(j)
X (dx̄), (1)

where F
(j)
Y |X is the conditional distribution of Y (j) given X(j) and F

(j)
X is the marginal

distribution of X(j). The mean of Y (j) is denoted as,

µ
(j)
Y =

∫
Rp

[∫
R
yF

(j)
Y |X(dy|x)

]
F

(j)
X (dx). (2)

To simplify the discussion, we focus on experiments where the the two populations share

similar characteristics.

Assumption 1 (Overlapping Support)

X (0) = X (1)

Assumption 1 is standard in the literature (e.g., Fortin, Lemieux, and Firpo 2011, As-

sumption 4). When the assumption fails, such as when X(1) is a linear transformation

of X(0), but X (0) ⊂ X (1), the counterfactual experiment is performed over the common

support. In this case, the difference µ(1)−µ(0) can be decomposed using a four-component

approach, as in Ñopo (2008) (also see Black, Haviland, Sanders, and Taylor 2008), rather

than the two-component decomposition discussed below.

The counterfactual distribution of Y (1) pretending that F
(1)
X = F

(0)
X is,

F
(1,0)
Y (y) =

∫
X (0)

F
(1)
Y |X(y|x̄)F

(0)
X (dx̄). (3)
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Thus, the counterfactual mean of Y (1) pretending that F
(1)
X = F

(0)
X is,

µ
(1,0)
Y =

∫
X (0)

[∫
R
yF

(1)
Y |X(dy|x)

]
F

(0)
X (dx) =

∫
X (0)

h(1)(x)F (0)(dx), (4)

where h(j) is the conditional mean (regression function) of Y (j) given X(j), j = 0, 1. This

allows to decompose µ(1) − µ(0) into two components, one reflecting differences in the

marginal distributions of X, and the other differences in the conditional expectation (or

distribution) of Y given X, within the two populations,

µ
(1)
Y − µ

(0)
Y = [µ

(1)
Y − µ

(1,0)
Y ]︸ ︷︷ ︸

Composition effect ∆C

+ [µ
(1,0)
Y − µ

(0)
Y ]︸ ︷︷ ︸

Residual effect ∆R

(5)

where,

∆C =

∫
X (0)

h(1)(x)
[
F (1)(dx)− F (0)(dx)

]
∆R =

∫
X (0)

[
h(1)(x)− h(0)(x)

]
F (0)(dx) (6)

In practice, it is often useful to focus on similar counterfactual experiments performed

on groups in the data, rather than on (4) and (5). Notice that for any partition of Rp,

C = {Cl}Ll=1 say, and any j = 0, 1,

F
(j)
Y (y) =

∫
X (j)

F
(j)
Y |X(y|x)F

(j)
X (dx) =

L∑
l=1

F
(j)
Y |X(y|X ∈ Cl)F

(j)
X {Cl},

where

F
(j)
Y |X(y|X ∈ A) =

1

F
(j)
X {A}

∫
{x∈A}

F
(j)
Y |X(y|dx)F

(j)
X (dx),

and

F
(j)
X {A} =

∫
{x∈A}

F
(j)
X (dx).

Accordingly,

µ
(j)
Y =

∫
X (j)

[∫
R
yF

(j)
Y |X(dy|x)

]
F

(j)
X (dx) =

L∑
l=1

h(j){Cl}F (j)
X {Cl},
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where

h(j){A} =
1

F
(j)
X {A}

∫
{x∈A}

h(j)(x)F
(j)
X (dx).

This forms the basis of the counterfactual decomposition introduced in the next section.

3 Decomposition with Aggregated Data

Based on Kitagawa (1955), rather than assuming a parametric model for h(j), we propose

to perform the decomposition using the averaged outcome in each cell of some partition

of the data. In particular, let C = {Cl}Ll=1 be a partition of Rp such that
⋃L

l=1Cl = Rp,

Cl

⋂
Cj = ∅ ∀ l ̸= j, and F

(1)
X {Cl} > a for all l and some a > 0. The counterfactual

distribution of Y (1) using the averaged data in each cell is,

F
(1,0)
Y,C (y) =

L∑
l=1

F
(1)
Y |X(y|X ∈ Cl)F

(0)
X {Cl}, (7)

with the corresponding counterfactual mean using the integrated regression in each cell,

µ
(1,0)
Y,C =

L∑
l=1

h
(1)
l {Cl}F (0)

X {Cl}. (8)

Accordingly, the counterfactual decomposition is given by,

µ
(1)
Y − µ

(0)
Y = [µ

(1)
Y − µ

(1,0)
Y,C ]︸ ︷︷ ︸

Composition effect ∆C
C

+ [µ
(1,0)
Y,C − µ

(0)
Y ]︸ ︷︷ ︸

Residual effect ∆R
C

, (9)

where,

∆C
C =

L∑
l=1

h(1){Cl}
(
F

(1)
X {Cl} − F

(0)
X {Cl}

)
︸ ︷︷ ︸

Composition contribution of the l group

(10)

∆R
C , =

L∑
l=1

(
h(1){Cl} − h(0){Cl}

)
F

(0)
X {Cl}︸ ︷︷ ︸

Residual contribution of the l group

, (11)
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naturally define the contributions each group has on the composition and residual effects.

Here, the composition and residual effects, ∆R
C and ∆C

C , bear a similar interpretation to

their ungrouped version in (6). ∆C
C indicates the difference observed pretending that the

populations only differ in their group compositions, given by (F
(j)
X {C1}, ..., F (j)

X {CL}) for

j = 0, 1. Conversely, ∆R
C measures the difference observed pretending that the group

compositions are identical.

Estimates of µ
(1,0)
Y,C follow naturally by the analogy principle,

µ̂
(1,0)
Y,C =

L∑
l=1

ĥ(1){Cl}p̂(0){Cl} =
L∑
l=1

ĥ
(1)
l p̂

(0)
l (12)

where

p̂
(j)
l =

1

nj

nj∑
i=1

I{X(j)
i ∈ Cl}, (13)

ĥ
(j)
l =

1

nj p̂
(j)
l

nj∑
i=1

Y
(j)
i I{X(j)

i ∈ Cl} (14)

estimate p
(j)
l = F

(j)
X {Cl} and h

(j)
l = h(j){Cl}, for j = 0, 1 and all l, respectively. Here nj

denotes the sample size of population j, while I{A} is the indicator function taking value

1 if condition A holds and 0 otherwise.

It is worth noticing that µ̂
(j,j)
Y,C = µ̂

(j)
Y , where µ̂

(j)
Y = n−1

j

∑nj

i=1 Y
(j)
i , j = 0, 1, regardless

of C. Therefore, when the empirical distributions of (Y (1), X(1)) and (Y (0), X(0)) are

identical, both composition and residual effects are zero. This feature is expected to

hold for any proposal. However, it is not guaranteed in general that a parametric or

semiparametric estimate of µ
(1,0)
Y , µ̂

(1,0)
Y say, would satisfy this property, particularly if the

estimated regression residuals in each population, Y
(j)
i − ĥ(j)(X

(j)
i ), have sample mean

different from zero.

This method complements the classic OB decomposition and can be applied regardless

of the underlying regression model. Unlike methods based on parametric or semipara-

metric specifications of the regression function, which are sensitive to assumptions and

smoothing, the decomposition with aggregated data depends only on the partition of the

data. In general, µ
(1,0)
Y,C ̸= µ

(1,0)
Y , but the difference µ

(1,0)
Y,C − µ

(1,0)
Y approaches zero as the
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size of each Cl shrinks. When the data is discrete, and C is the finest partition of the

data, µ
(1,0)
Y,C = µ

(1,0)
Y . In this case, the estimator µ̂

(1,0)
Y,C is identical to the counterfactual

estimator in Ñopo (2008). If the data, instead, is already provided in contingency tables,

the estimator µ̂
(1,0)
Y,C is identical to the one in Kitagawa (1955).

With continuous variables, one can split the sample into statistically equivalent blocks

using quantiles of each element in X(1) (see Gessaman 1970, for an example). Alter-

natively, statistical learning theory offers a plethora of methods to discern meaningful

groupings in the data (Hastie, Tibshirani, and Friedman 2009), such as k-means cluster-

ing (MacQueen et al. 1967). In more general settings, including non-ordinal characteris-

tics, Classification and Regression Trees (CART) (Breiman, Friedman, Olshen, and Stone

1984) serve as effective grouping tools. The criterion for aggregating the data is based

on how well the step function ĥ(1)(·) =
∑L

l=1 I{· ∈ Cl}ĥ(1)
l , derived from the grouping,

fits h(1)(·). Trees offer the advantage of not relying on measures of distance in the char-

acteristics’ space and allow for grouping with non-ordered categorical variables. In all

these cases, and many others, the partitioning choice is influenced by the data - i.e., the

partition is data-dependent.

Notice that the counterfactual estimator µ̂
(1,0)
Y,C often coincides with a semiparametric

estimator of µ
(1,0)
Y . With equally-sized cells, for instance, µ̂

(1,0)
Y,C is a weighted average of

the Cattaneo and Farrell (2013) partitioning estimator for the regression function, using

a first-order polynomial basis approximation. Similarly, when the data is partitioned by

CART, which is inherently a nonparametric estimation method.

In the next section, we provide fixed-L inference for the grouped estimator µ̂
(1,0)
Y,C

and the relative decomposition components across various data-dependent partitioning

schemes.

Then, in Section 5, we explore the semiparametric aspect of µ̂
(1,0)
Y,C with data-driven

grouping and diverging L through Monte Carlo simulations. In particular, we compare the

performance of µ̂
(1,0)
Y,C as a semiparametric estimator of µ

(1,0)
Y under data-driven groupings

with other semiparametric estimation methods for µ
(1,0)
Y .
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4 Inference with Data-dependent Partitions

We discuss fixed-L inference for the counterfactual estimator µ̂
(1,0)
Y,C . First, we provide the

limit distribution of the statistics under a fixed partitioning scheme, and then extend the

inference to data-dependent partitions, subject to certain restrictions on the partitioning

algorithm. Similar results for the estimates of the decomposition effects, ∆̂C
C = µ̂

(1)
Y −µ̂

(1,0)
Y,C

and ∆̂R
C = µ̂

(1,0)
Y,C − µ̂

(0)
Y , are provided in the appendix.

Before doing so, is propaedeutical, following Rothe (2010), to distinguish between two

different type of data generating processes defining the nature of the relationship between

(Y (1), X(1)) and (Y (0), X(0)).

Assumption 2 (Data)

(a) The data {Y (1)
i , X

(1)
i , Y

(0)
i , X

(0)
i }ni=1 are jointly i.i.d.

(b) The data {Y (1)
i , X

(1)
i }n1

i=1 and {Y (0)
i , X

(0)
i }n0

i=1, with n1/n0 = γ+ o(1) for some γ > 0,

are i.i.d. and mutually independent.

Assumption 2 (a) models two-sample analysis, where the sample sizes (are assumed to)

grow proportionally. While Assumption 2 (b) model dependence relationship between two

sub-populations in panel data. Throughout, we adopt the notation relative to the former

structure since it encompasses the latter as the special case n1 = n0 = n.

Under a fixed partition (i.e., C is non-random), the asymptotic distribution of µ̂
(1,0)
Y,C

is as outlined in the following proposition.

Proposition 1 (Asymptotic Distribution with Fixed Partition)

Let σ
(j)
l = V(Y (j)|X(j) ∈ Cl)/p

(j)
l , under Assumptions 1, and 2 (a), µ̂

(1,0)
Y,C converges to a

normal distribution:
√
n
(
µ̂
(1,0)
Y,C − µ

(1,0)
Y,C

)
d−→ N (0, VA) ,

VA =
L∑
l=1

(
(p

(0)
l )2σ

(1)
l + (h

(1)
l )2p

(0)
l (1− p

(0)
l )
)
−
∑
l ̸=f

h
(1)
l h

(1)
f p

(0)
l p

(0)
f + 2

L∑
l=1

L∑
f=1

h
(1)
l c(l,f)p

(0)
f ,

where

c(l,f) =
q
(1)
(l,f) − h

(1)
f p(l,f)

p
(1)
f

,
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and,

q
(j)
(l,f) = E

[
Y (j)I{X(0) ∈ Cl}I{X(1) ∈ Cf}

]
p(l,f) = E

[
I{X(0) ∈ Cl}I{X(1) ∈ Cf}

]
.

Under Assumptions 1, and 2 (b)

√
n1

(
µ̂
(1,0)
Y,C − µ

(1,0)
Y,C

)
d−→ N (0, VA) ,

where:

VA =
L∑
l=1

(
(p

(0)
l )2σ

(1)
l +

1

γ
(h

(1)
l )2p

(0)
l (1− p

(0)
l )

)
− 1

γ

∑
l ̸=f

h
(1)
l h

(1)
f p

(0)
l p

(0)
f .

Proof. Appendix.

The result extends the matching estimator distribution of Ñopo (2008) to any (fixed)

matching window and interdependent data.

In most cases, however, the grouping choice is influenced by the data, such as with

equally-sized cells or with data-driven methods like k-means clustering. In this scenario,

the asymptotic theory employed in Proposition 1 is no longer suitable. Instead, set-

specific averages are modeled as empirical measures indexed by sets, and the asymptotic

distribution of the counterfactual estimator follows from uniform convergence results (see,

for example, Pollard 1990, Section 12).

The data-dependent partitions, based on Pollard (1979) and Andrews (1988), are

modeled as random functions over a class of properly restricted measurable sets, D say,

where D is a class of sets in Rp from which the cells of each partition are selected. Denote

as C the class of partitions of Rp consisting of L sets from D (with L fixed for all n),

C =

{
C = (C1, ..., CL) ∈ CL :

L⋃
l=1

Cl = X , Cl

⋂
Cf = ∅, ∀l ̸= f

}
. (15)

Equip D with the topology generated by the L2(FX) semi-norm and give C the corre-

sponding product topology, where FX = (γ/(1 + γ))F
(1)
X / + (1/(1 + γ))F

(0)
X is the joint

distribution of characteristics in the two populations and γ is as defined in Assumption

11



2. This means that two sets C1 and C2 in X are close if FX{C1∆C2} is small, ∆ being

the symmetric difference operator, C1∆C2 = (C1 ∪ C2)\(C1 ∩ C2).

For each sample size n (alternatively, n1 or n0), the data-dependent partition Ĉ =

(Ĉ1, ..., ĈL) is a measurable mapping from the underlying probability space to C, such

that Ĉ converges in probability to some fixed partition in C. Specifically, Ĉ p−→ C if and

only if for all ϵ > 0,

P (FX{Ĉl∆Cl} > ϵ) −→ 0, for all l = 1, ..., L.

Assumption 3 Ĉ p−→ C for some fixed set of cells C ∈ C.

Assumption 3 is a standard requirement for the convergence of empirical processes indexed

by sets. It is fulfilled by a wide range of partitioning algorithms, including k-means

clustering, or by any partitioning algorithm where the splitting points depend continuously

on estimated parameters with a constant probability limit (Andrews 1988).

Importantly, to obtain the limit distribution of µ̂
(1,0)

Y,Ĉ
, it is crucial to limit the com-

plexity of the partitioning algorithm. This limitation is established by assuming that the

cells are selected from a Vapnik-Cervonenkis (VC) class.

Assumption 4 C is a VC class of sets.

This assumption is independent of the data distribution and sufficiently general for our

purposes. For instance, algorithms generating cells with a finite number of straight edges

and the class of hyper ellipsoids fall within the VC classes. The property is preserved under

set operations such as unions, intersections, differences, and complements, as discussed

by Andrews (1988) and Pollard (1984); further insights can be found in Section 2.6 of

Van Der Vaart (1996).

All the partitioning methods discussed in the previous section have finite VC class,

including CART when the number of cells grow at logarithmic rate (see, e.g., Athey and

Wager 2021 pag. 143). Assumption 3, instead, is a high-level condition for regression tree

methods.

When the above regularity conditions are fulfilled, the asymptotic distribution of the

counterfactual estimator is defined by the limit partition.
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Theorem 1 (Asymptotic Distribution with Random Partition)

Under Assumptions 1, 2, 3, and 4,

√
n
(
µ̂
(1,0)

Y,Ĉ
− µ

(1,0)
Y,C

)
d−→ N (0, VA)

where VA is defined as in Proposition 1.

Analogous results for the decomposition effects estimators are available in the appendix.

5 Monte Carlo Simulations

We conduct Monte Carlo simulations to investigate the effectiveness of the counterfactual

estimator µ̂
(1,0)

Y,Ĉ
as a semiparametric estimator of µ(1,0) in finite samples. To aggregate

the data we generate partitions using CART and the k-means clustering algorithm. The

performance assessment of the estimators is based on the mean squared error (MSE)

and the mean absolute error (MAE) of the counterfactual mean estimates compared to

the counterfactual mean µ(1,0). The simulations compare the counterfactual estimator

using aggregated data with both parametric and nonparametric estimators of the coun-

terfactual mean. Parametric approaches considered include the OB decomposition (linear

parametrization) and the method proposed by Machado and Mata (2005), using a linear

specification of the conditional quantiles. Non-parametric estimators are based on kernel

regression (Rothe 2010) and matching (Ñopo 2008).

We divide the simulation study into two parts, first discussing the case when the

covariate vector X(j) consists of continuous variables, and then when X(j) consists of

both discrete and continuous variables. In the first case, we consider three different

specifications for the regression function h(1)(·), and in the second, four. The simulated

samples have sizes n1 = n0 = n with n ∈ {1000, 5000}. For each model and estimator we

perform 1000 Monte Carlo replications. Throughout the simulations, outcomes, Y (j), are

generated according to

Y (j) = 5 + h(j)(X(j)) + V (j)

for j ∈ {0, 1}, where V (g) follows a truncated normal distributionN(0, (1+h(j)(X(j)))2,−3, 3).
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In the first simulation design, X(j) consists of K continuous variables, with K ∈

{2, 5, 10}, each independently distributed as an exponential r.v. f(x, λj) = λje
−λjx trun-

cated at 1 with the decay parameter λ0 = 3 and λ1 = 4.5. We consider three sparse

specifications of h(1)(·) depending only on the first two covariates as following:

Linear : h(1)(X(1)) = X
(1)
1 +X

(1)
2

Nonlinear: h(1)(X(1)) = sin(πX
(1)
1 ) + sin(πX

(1)
2 )

Discontinuous: h(1)(X(1)) = 1(X
(1)
1 ≥ 0.5) + 1(X

(1)
2 ≥ 0.5)

(16)

Whereas h(0)(X(1)) = X
(0)
1 +X

(0)
2 for all DGP settings.

In the second part of the Monte Carlo study, we consider characteristics (X
(j)
1 , X

(j)
2 )

where X
(j)
1 is a continuos r.v. distributed as one of the X(j) in the first simulation

design, while X
(j)
2 takes values in an unordered set {a1, a2, ..., aP}, with P ∈ {5, 10}. We

equivalently write X
(j)
2 as P dummy variables {Z(j)

t = I(X(j)
2 = t)}Pt=1. The probabilities

P(Z(0)
t = 1) = 1/P and P(Z(1)

t = 1) = F (F−1(t/P, λ0), λ1) − F (F−1((t − 1)/P, λ0), λ1),

where F (x, λj) is the CDF of f(x, λj). We consider four specifications of h(1)(·):

Linear: h(1)(X(1)) = X
(1)
1 +

L∑
t=1

βtZ
(1)
t

Nonlinear: h(1)(X(1)) = sin(2πX
(1)
1 ) +

L∑
t=1

βtZ
(1)
t

Interaction: h(1)(X(1)) = sin(2πX
(1)
1 ) +

L∑
t=1

βtZ
(1)
t +

L∑
t=1

βtZ
(1)
t sin(2πX

(1)
1 )

Discontinuous: h(1)(X(1)) = 1(X
(1)
1 ≤ 0.5) +

L/2∑
t=1

Z
(1)
t .

(17)

Whereas the model for population 0 is h(0)(X(0)) = X
(0)
1 +

∑L−1
t=1 βtZ

(0)
t .

In the first part, the bandwidth for the Kernel estimator is hb = 1.5σxk
n−(2K+1) (Rothe,

2010), where σxk
is the standard deviation of the respective covariates. While in the second

part, the kernel estimator using the unfeasible optimal bandwidth of Racine and Li (2004).

Ñopo (2008) matching estimator only uses the first nearest neighbor. The minimum size

of each partition, for both CART and k-means, is hc = 2n
1
3
1 . in the CART algorithm, we
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set the initial penalty term to 0 cp = 0, while in the k-means clustering algorithm we set

the number of partitions as n/2hc and the maximum number of iteration to 100.

Tables 1 and 2 present the results of the first and second sets of simulations, respec-

tively. As expected, in both set of simulations, the parametric estimators exhibit the

lowest MAE and RMSE in the linear models. However, even with continuos covariates,

nonparametric approaches demonstrate significant advantages over parametric estima-

tors in the nonlinear models, particularly when K = 2. In sparse models (K = 5 and

K = 10), only the CART algorithm maintains strong performance, while other nonpara-

metric methods suffer from the curse of dimensionality. In the mixed covariates case, the

matching estimator keeps good performance even when P = 10, while CART performs

better than matching only if the DGP involves the interaction term between continuous

and discrete variables. On the other hand, in the discontinuous models, the CART algo-

rithm outperforms other nonparametric methods for all K in both continuos and mixed

covariates settings.

6 Analysis of AROPE Index in Spain

We investigate the impact of the Great Recession on poverty rates in Spain, analyzing

how changes in the distribution of poverty risk factors, induced by the economic shock,

influenced the surge in poverty rates. This analysis contributes to a large literature

employing OB decomposition to decompose poverty rates across different groups, such as

regions (Ayala, Jurado, and Pérez-Mayo 2011), ethnic groups (Grad́ın 2012), and rural

and urban areas (Ayala, Jurado, and Pérez-Mayo 2021). See Biewen and Jenkins (2005),

Bourguignon and Ferreira (2005), and Bourguignon, Ferreira, and Leite (2008) for an

application to the household income distribution.

Taking 2008 as the population of reference (standard), corresponding to the recession’s

onset, we decompose the difference between this baseline and the rates in subsequent years

t ∈ {2009, ..., 2014} into composition and residual effects.

The data is grouped using the CART algorithm with the Rpart package in R. The

number of groups is determined by minimizing the cross-validated mean squared error,

as detailed in part D of the appendix. The grouped decomposition offers crucial insights
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Table 1: Monte Carlo Simulations: Continous Covariates

Model K n OB Quantile Kernel Matching KM CART
MAE

Linear

2 1000 0.0360 0.0426 0.0398 0.0494 0.0412 0.0581
2 5000 0.0158 0.0331 0.0176 0.0229 0.0176 0.0224
5 1000 0.0389 0.0457 0.0723 0.0538 0.0623 0.0605
5 5000 0.0183 0.0307 0.0578 0.0291 0.0436 0.0283
10 1000 0.0452 0.0508 0.1008 0.0746 0.0972 0.0677
10 5000 0.0204 0.0319 0.0924 0.0535 0.0670 0.0286

Nonlinear

2 1000 0.0501 0.0805 0.0412 0.0556 0.0416 0.0416
2 5000 0.0333 0.0756 0.0192 0.0249 0.0188 0.0191
5 1000 0.0503 0.0764 0.0563 0.0543 0.0697 0.0415
5 5000 0.0333 0.0738 0.0419 0.0256 0.0455 0.0193
10 1000 0.0589 0.0811 0.0714 0.0615 0.1041 0.0431
10 5000 0.0354 0.0736 0.0618 0.0341 0.0696 0.0188

Discontinuous

2 1000 0.0379 0.0372 0.0396 0.0505 0.0400 0.0368
2 5000 0.0209 0.0174 0.0193 0.0221 0.0191 0.0168
5 1000 0.0416 0.0395 0.0956 0.0590 0.0654 0.0368
5 5000 0.0212 0.0190 0.0727 0.0288 0.0374 0.0163
10 1000 0.0474 0.0457 0.1466 0.0971 0.1117 0.0374
10 5000 0.0238 0.0213 0.1297 0.0688 0.0697 0.0175

RMSE

Linear

2 1000 0.0447 0.0526 0.0502 0.0620 0.0510 0.0738
2 5000 0.0199 0.0376 0.0220 0.0286 0.0222 0.0281
5 1000 0.0493 0.0568 0.0822 0.0664 0.0738 0.0743
5 5000 0.0230 0.0363 0.0613 0.0359 0.0484 0.0341
10 1000 0.0558 0.0627 0.1086 0.0889 0.1057 0.0826
10 5000 0.0257 0.0381 0.0943 0.0593 0.0707 0.0348

Nonlinear

2 1000 0.0625 0.0934 0.0515 0.0692 0.0521 0.0523
2 5000 0.0390 0.0790 0.0240 0.0312 0.0234 0.0239
5 1000 0.0628 0.0904 0.0679 0.0680 0.0823 0.0512
5 5000 0.0399 0.0783 0.0468 0.0317 0.0508 0.0242
10 1000 0.0736 0.0976 0.0836 0.0762 0.1143 0.0542
10 5000 0.0425 0.0792 0.0654 0.0413 0.0741 0.0238

Discontinuous

2 1000 0.0479 0.0465 0.0503 0.0632 0.0505 0.0463
2 5000 0.0260 0.0217 0.0243 0.0278 0.0241 0.0211
5 1000 0.0520 0.0495 0.1042 0.0727 0.0769 0.0456
5 5000 0.0262 0.0234 0.0751 0.0355 0.0426 0.0202
10 1000 0.0590 0.0573 0.1519 0.1107 0.1193 0.0473
10 5000 0.0297 0.0272 0.1310 0.0737 0.0735 0.0219

MAE and RMSE of the counterfactual mean for different models and
estimators. OB stands for the Oaxaca-Blinder decomposition, Quantile for
the method proposed by Machado and Mata (2005), Kernel for the Rothe
(2010) estimator, Matching for the Ñopo (2008) matching estimator, KM

and CART stand for the partitioning estimator µ̂
(1,0)

Ĉ
using k-means and

CART, respectively.
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Table 2: Monte Carlo Simulations: Mixed Covariates

Model P n OB Quantile Kernel Match KM CART
MAE

Linear
5

1000 0.0378 0.0440 0.0654 0.0552 0.0473 0.0632
5000 0.0173 0.0338 0.0249 0.0232 0.0178 0.0241

10
1000 0.0372 0.0419 0.0895 0.0553 0.0733 0.0657
5000 0.0173 0.0328 0.0357 0.0247 0.0329 0.0268

Nonlinear
5

1000 0.0447 0.0644 0.0572 0.0549 0.0517 0.0546
5000 0.0257 0.0575 0.0221 0.0218 0.0187 0.0290

10
1000 0.0456 0.0624 0.0736 0.0567 0.0716 0.0562
5000 0.0260 0.0568 0.0316 0.0231 0.0351 0.0290

Interaction
5

1000 0.0479 0.0690 0.0443 0.0538 0.0552 0.0440
5000 0.0316 0.0655 0.0176 0.0212 0.0176 0.0197

10
1000 0.0492 0.0681 0.0581 0.0540 0.0771 0.0430
5000 0.0315 0.0633 0.0210 0.0223 0.0394 0.0197

Discontinuous
5

1000 0.0400 0.0494 0.0527 0.0567 0.0540 0.0392
5000 0.0187 0.0384 0.0205 0.0230 0.0194 0.0169

10
1000 0.0411 0.0501 0.0743 0.0575 0.0868 0.0408
5000 0.0196 0.0375 0.0268 0.0253 0.0406 0.0177

RMSE

Linear
5

1000 0.0476 0.0548 0.0758 0.0697 0.0582 0.0766
5000 0.0216 0.0388 0.0303 0.0288 0.0226 0.0303

10
1000 0.0468 0.0531 0.0978 0.0705 0.0847 0.0797
5000 0.0217 0.0382 0.0405 0.0306 0.0387 0.0329

Nonlinear
5

1000 0.0557 0.0771 0.0689 0.0695 0.0641 0.0672
5000 0.0313 0.0619 0.0270 0.0275 0.0231 0.0348

10
1000 0.0562 0.0751 0.0842 0.0713 0.0839 0.0697
5000 0.0317 0.0613 0.0365 0.0292 0.0413 0.0351

Interaction
5

1000 0.0601 0.0824 0.0547 0.0677 0.0683 0.0543
5000 0.0369 0.0691 0.0222 0.0268 0.0222 0.0246

10
1000 0.0621 0.0824 0.0684 0.0683 0.0911 0.0532
5000 0.0368 0.0671 0.0260 0.0280 0.0454 0.0247

Discontinuous
5

1000 0.0499 0.0604 0.0640 0.0712 0.0663 0.0489
5000 0.0236 0.0436 0.0257 0.0286 0.0244 0.0212

10
1000 0.0514 0.0614 0.0860 0.0717 0.1011 0.0515
5000 0.0246 0.0434 0.0325 0.0319 0.0470 0.0221

MAE and RMSE of the counterfactual mean for different models and
estimators. OB stands for the Oaxaca-Blinder decomposition, Quantile for
the method proposed by Machado and Mata (2005), Kernel for the Rothe
(2010) estimator, Matching for the Ñopo (2008) matching estimator, KM

and CART stand for the partitioning estimator µ̂
(1,0)

Ĉ
using k-means and

CART, respectively.
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for targeting pro-poorness policies, such as directing resources to address unemployment

within specific age ranges.

Individuals in poverty conditions are identified by the AROPE (At-risk-of-poverty-or-

social-exclusion) measure, a multi-dimensional index adopted by the European Commis-

sion to assess poverty. The AROPE classifies an individual as at risk of poverty or social

exclusion if they face at least one of the following situations:

• At risk of Poverty (AROP60): The individual lives in a household with an equiv-

alized disposable income1 below 60% of the national median equivalized disposable

income.

• Severe material deprivation (MD): The individual cannot afford at least 4 out of 9

predefined material items considered by most people to be desirable or even neces-

sary to live an adequate life.

• Low work intensity (LJ): The individual lives in a household where the adults worked

a working time equal to or less than 20% of their total combined work-time potential

during the previous year.

The proportion of individuals falling into the AROPE classification determines the AROPE

rate.

The data used is from the Survey on Living Condition (Encuesta de condiciones de

vida or ECV) elaborated by the Spanish Statistical National Institute (INE). It is a yearly

survey collecting harmonized data on income, poverty, social exclusion, and living condi-

tions. We consider only individuals older than 16 years old and exclude the autonomous

cities of Ceuta and Melilla. Furthermore, we drop from the sample observations with

missing values. The drop affects a percentage of individuals smaller than 3% of the whole

sample. The survey furnishes population weight for the adult population (16+) that we

employ in the estimation of the statistics and relative standardization.

As potential drivers of poverty, we choose a set of characteristics considered relevant

factors of risk for being poor or materially deprived. These include information both at the

household and individual levels. At the household level, we report the household’s type

(single person, couple with or without children, single-parent households, etc.) and the

1The equivalized disposable income is the main welfare measure adopted by Eurostat. This is equal
to the total household income divided by the OECD scale of family size.
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Table 3: Descriptive Statistics

Sex Age Nat Cbirth Educ WorkS H-type HH-sex HH-age H-syze

2008

mean 1.524 61.747 1.090 1.124 2.465 3.514 9.764 1.358 67.900 3.192
median 2 61 1 1 2 3 9 1 67 3
q-25 1 47 1 1 1 1 8 1 57 2
q-75 2 76 1 1 3 5 12 2 79 4
std.dev 0.499 18.715 0.396 0.463 1.584 2.756 2.787 0.479 14.693 1.312

2014

Mean 1.522 57.359 1.081 1.139 2.590 3.988 9.558 1.363 63.661 3.067
Median 2 57 1 1 2 5 9 1 63 3
p-25 1 43 1 1 1 1 8 1 53 2
p-75 2 71 1 1 5 6 12 2 74 4
St.dev 0.499 18.643 0.374 0.487 1.662 2.577 2.858 0.480 14.776 1.299

Descriptive statistics of the characteristics in 2008 and 2014. The table
reports mean, median, 25th, 75th percentiles, and standard deviation.
The characteristics considered are: sex (sex), age (age), nationality (nat),
country of birth (cbi), education (educ), work status (workS), household
type (H-type), and size (H-syze), household head sex (HH-sex), and age
(HH-age). Detailed description of the variables is in the appendix.

household head’s gender and age. At the individual level, we choose a set of variables that

characterizes age, education, employment, sex, the country of birth, and the nationality

of each individual in the sample. In the appendix, we report a detailed breakdown of the

variables used in this analysis.

The proportion of individuals in AROPE experienced a dramatic increase during the

recession, rising from 22.6% of the total (adult) population in 2008 to a peak of 28% in

2014. Even after 2014, despite the recovery of the Spanish economy, AROPE rates re-

mained around 26% of the total population. The individual AROPE components followed

similar trends, although, in proportion, the effect on the MD and LJ indices was much

higher than on the AROPE and the income-based measure. During the 2008-2014 period,

the proportion of individuals in low work intensity and material deprivation conditions

more than doubled.

To understand the dynamic behind this rapid surge in poverty rates, we decompose

the AROPE rate and its three components along the 2008-2014 period, using the 2008

population as a reference. Figure 1 illustrates the decomposition of the four rates, the

indices time series are depicted in red, while the counterfactual rates are in blue. Each

graph reports a dashed black line corresponding to the indices level in 2008, the differences

between the red and blue line and the blue and black line determine the compositional
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Table 4: National Poverty Rates

Year AROPE AROP60 MD LJ

2008 22.6 18.5 3.1 5.3
2009 23.6 19.0 4.0 5.9
2010 25.1 19.4 4.4 8.4
2011 25.8 19.4 4.3 10.2
2012 26.4 19.7 5.5 10.9
2013 26.5 19.2 5.6 12.0
2014 28.0 20.7 6.5 13.0
2015 27.7 20.9 5.8 11.8
2016 27.1 21.1 5.5 11.3
2017 25.7 20.3 4.8 9.6
2018 25.5 20.6 5.1 8.1
2019 24.3 19.3 4.4 8.0
2020 25.4 19.6 6.4 7.4

Evolution of AROPE rate and its three components in Spain from 2008
to 2020. The values indicate percentage of the population.

and residual components, respectively. Table 4, instead, reports the decompositions of

the four indices 2008-2014 differentials, together with the number of groups determined

by the CART algorithm.

Compositional variations appear as the main driver of the shock effects on the aggre-

gate index. Similar patterns show in the decomposition of the LJ and AROP60 rates,

which perturbations seem to drive the raise in AROPE rates. As unemployment is a

primary risk factor for poverty, it is not surprising that variations in characteristics’ com-

position had a massive impact on the increase of poverty rates. The shock drastically

reduced the demand for labor, particularly in sectors like construction, thus, moving a

big portion of the population from low-risk factors (full-time employment) to high-risk

factors (part-time employment or unemployment).

The interpretation of residual components is more difficult than that of composition

components, as they depend on unobserved factors. Loosely speaking, positive (negative)

residual components implies that the poverty conditions of groups of individuals worsened

(improved) (keeping constant the population composition). In Figure 1 (a-b), we observe

negative residual components across most of the recession period, which suggests that if

the population kept the same characteristics composition of 2008, the poverty ratio would

have actually decreased.

Remarkably, the CART algorithm does not find useful splits for the MD index, as
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Figure 1: Poverty Rates Decomposition

(a) AROPE (b) AROP60

(c) MD (d) LJ

The graphs illustrate the time series of the four rates, AROPE, AROP60,

MD, LJ, in red together with the relative counterfactual rate, µ̂
(t,2008)
Y,C , in

blue for t ∈ {2008, ..., 2014}.

the predictive power of the characteristics is insufficient for this index. As a result the

composition component is zero. This evidence, suggesting strong difference in risk factors

of material deprivation and income-based measure, is consistent with previous studies

showing that only a small percentage of individuals exiting income-based poverty also

leave conditions of material deprivation (see, e.g., Ayala, Jurado, and Pérez-Mayo 2011).

The grouping with CART also allows to extrapolate information about groups of

individuals and how they contributed to the rapid rise of poverty rates. For the sake

Table 5: Decomposition of National Poverty Rates

Index ∆ Comp. eff. Res. eff. Nr. Groups

AROPE 5.3 6.1 (27.19) -0.7 (-2.05) 24
AROP60 2.2 4.4 (27.8) -2.2 (-6.47) 18
MD 3.3 0 (·) 3.3 (31.01) 1
LJ 7.6 6.8 (34.45) 0.7 (3.76) 21

Decomposition of 2008-2014 national poverty rates differentials. Reported
statistics are multiplied by 100. ∆ is the rate differential in the two period.
The third and fourth columns report the composition and residual effects,
respectively. Nr. Groups are the number of groups generated by the
CART algorithm. T-ratio with 0 null hypothesis in parenthesis.
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Table 6: Groups Details

Group WorkS Age Educ Cbirth Nat H-type HH-age H-size

1 1,5 ≥ 67.5 0,1,2 1 - - - -
2 6,9 < 67.5 3,4,5 1 - 8,9,10,11,12,13,14 ≥ 69.5 ≥ 3.5
3 1,5 - 3,4,5 1 - - - -
4 2,4,8 ≥ 67.5 - - - - - -
5 6,9 < 67.5 0, 1, 2 - - - - -
6 6,9 < 67.5 3,4,5 1 - 8,9,10,11,12,13,14 < 69.5 -
7 1 < 67.5 0,1,2 1 - - - -
8 6,9 < 67.5 3,4,5 1 - 8,9,10,11,12,13,14 ≥ 69.5 < 3.5
9 2,4,8 < 67.5 2,3,4,5 1,2 - - - -
10 1,5 - 5 2,3 - 10,11,12,13,14 - -
11 6,9 ≥ 67.5 - - - 6,7,8,9,10,11,12,13,14 - -
12 1,5 - - 2,3 - 1,2,3,4,5,6,7,8,9 - -
13 6,9 < 67.5 3,4,5 2,3 - 8,9,10,11,12,13,14 - -
14 4,8 < 67.5 0,1 - - - - -
15 5 < 67.5 0,1,2 1 - - - -
16 1,5 - 0,1,2,3,4 2,3 3 10,11,12,13,14 - -
17 2 < 67.5 2,3,4,5 3 - - - -
18 6,9 < 67.5 3,4,5 - 1,2,3,4,5,6,7 - -
19 2 < 67.5 0,1 - - - ≥ 63.5 -
20 2 < 67.5 0,1 - - - < 63.5 -
21 1,5 - 0,1,2,3,4 2,3 1,2 10,11,12,13,14 - < 4.5
22 6,9 ≥ 67.5 - - - 1,2,3,4,5 - -
23 4,8 < 67.5 2,3,4,5 3 - - - -
24 1,5 - 0,1,2,3,4 2,3 1,2 10,11,12,13,14 - ≥ 4.5

Split rule for each group determined by the CART algorithm in the 2014-
2008 differential decomposition of the AROPE rate. Variables for which
there were no useful splits have been excluded.

of brevity, we report and comment only on the detailed decomposition of the 2008-2014

AROPE differential. The tree generated by the CART algorithm, returns an immediate

overview of the generated groups and their contribution to the AROPE rise, as reported

in Table 6 and 7. The former table reports the splitting rule determining each group, the

latter reports the relative size of the groups and the within-group AROPE rate in the 2008

and 2014 populations. Increases (decreases) in the probability of being in these groups,

p
(14)
l − p

(08)
l , produce positive (negative) composition contributions; increases (decreases)

of the within-group AROPE rate, h
(14)
l − h

(08)
l , determine positive (negative) residual

contribution. The magnitude of the contribution on the two term is determined by the

interaction between these variations and the probability of being in AROPE in 2014

(composition) or in the group in 2008 (residual).

The group analysis unveils nuanced patterns in the data that would be overlooked when

considering only aggregate statistics. Group 1, for instance, comprises elderly Spanish

individuals, either employed full-time or retired, with lower educational levels. Conversely,
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Figure 2: AROPE Tree: The terminal leafs report the predicted AROPE
of each class in the 2014 population; green colors denote high
within-group AROPE rate, while blue denotes the opposite.
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Table 7: Groups Contribution

Group h
(14)
l p

(14)
l h

(08)
l p

(08)
l ContrC ContrR

1 12.19 12.27 22.70 15.38 -37.91 -161.64
2 38.32 0.34 39.80 0.10 9.19 -0.14
3 6.85 25.36 7.03 29.36 -27.4 -5.28
4 18.01 7.90 32.05 7.94 -0.72 -111.47
5 71.61 10.74 55.86 2.28 605.82 35.91
6 37.13 4.73 21.00 0.62 152.60 10.00
7 22.79 9.11 20.33 15.49 -145.40 38.10
8 71.54 0.35 83.85 0.09 18.60 -1.10
9 29.63 14.47 23.23 11.50 88.00 73.60
10 27.55 0.71 30.32 1.04 -9.09 -2.88
11 26.15 2.30 35.22 3.54 -32.42 -32.10
12 28.63 2.68 30.16 3.98 -37.21 -6.08
13 64.18 1.43 56.66 0.18 80.22 1.35
14 69.63 1.64 50.79 2.08 -30.63 39.18
15 77.59 0.26 55.47 0.14 9.31 3.09
16 67.06 0.77 50.81 2.22 -97.23 36.07
17 48.89 0.48 49.98 0.66 -8.80 -0.71
18 79.77 0.95 83.06 0.07 70.19 -0.23
19 22.70 0.24 29.63 0.24 0.00 -1.66
20 51.67 0.43 36.97 0.48 -2.58 7.05
21 46.56 0.98 45.90 0.74 11.17 0.48
22 63.46 0.28 64.55 0.23 3.17 -0.25
23 61.15 1.19 65.32 0.99 12.23 -4.12
24 57.48 0.30 47.30 0.52 -12.64 5.29

Estimated frequencies and AROPE rates of each group, multiplied by 100.
The last two columns shows the contribution of each group to composition
(ContrC) and residual (ContrR) components.

group 16 consists of foreign-born individuals, also employed full-time or retired, with low

education, and residing in households with dependent children. Interestingly, both groups

exhibited a decrease in their incidence in 2014, contributing negatively to the composition

component. Moreover, group 1 demonstrated a lower percentage of individuals in poverty

in 2014 compared to 2008, indicating socio-economic dynamics that affected the groups

differently across the two periods.

The reduction in the weight of group 16 provides evidence of the well-known migratory

movements of foreign-born individuals to their country of origin during recession periods.

However, the mechanisms behind group 1 are less clear. Potential explanations include

generational effects, whereby the elderly in 2014 are more educated than those in 2008,

and demographic changes, such as a smaller proportion of elderly individuals in 2014

compared to 2008.

On the other hand, group 5, comprising working-age individuals out of the labor

market with low levels of education, experienced a substantial increase both in the weight
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of the group across the entire population and in the percentage of individuals within this

group facing AROPE conditions. Following the recession, the incidence of this group in

the entire population surged from 2.28% in 2008 to 10.74% in 2014, with a staggering

71.61% experiencing AROPE conditions within the group in 2014. The intersection of

these two factors resulted in the highest contribution to the composition component among

all groups. In this case, it is evident that labor market perturbations consequent to the

shock drove the variations in group frequency

Characteristics Contribution

We can distinguish the contribution of each characteristics to the two components with a

group-specific parametric structures. Consider, for instance, the following assumption:

Assumption 5 (Stepwise Linearity)

The CEF is assumed to be stepwise linear,

h(j)(x) =
L∑
l=1

x′β
(j)
l I{x ∈ Cl} for j ∈ {0, 1}. (18)

This group-specific linear specification is more general than the usual linearity assumption,

which is a particular case of Assumption 2 with β
(j)
l = β

(j)
f for l ̸= f and j ∈ 0, 1. Under

Assumption 2, ∆C
C and ∆R

C are decomposed in the following way:

∆R
C =

p∑
k=1

L∑
l=1

E(X(0)
k |X(0) ∈ Cl)(β

(1)
kl − β

(0)
kl )p

(1)
l︸ ︷︷ ︸

Coefficient effect of covariate k in group l (R1)

+

p∑
k=1

(
L∑
l=1

E(X(1)
k |X(1) ∈ Cl)− E(X(0)

k |X(0) ∈ Cl)

)
β
(1)
kl p

(1)
l︸ ︷︷ ︸

Endowment effect of covariate k in group l (R2)

,

∆C
C =

p∑
k=1

L∑
l=1

E(X(1)
k β

(1)
kl |X

(1) ∈ Cl)
(
p
(1)
l − p

(0)
l

)
︸ ︷︷ ︸

Groups composition contribution of group l (C)

.

(19)

When L = 1, the term (C) disappears, and the terms (R1) and (R2) become equal to

the coefficient and endowment effects, respectively, of the OB decomposition. Conse-
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Table 8: Characteristics Contribution

Cons. Sex Age Nat Cbirth Educ WorkS H-size H-type HH-sex HH-age

AROPE

C 0.074 -0.015 0.037 -0.009 -0.002 -0.011 -0.016 -0.024 0.019 0.000 0.013
R1 -0.049 0.046 0.043 -0.088 -0.040 0.010 -0.032 0.082 -0.082 0.000 -0.051
R2 0.000 0.001 0.003 -0.001 0.000 0.000 0.000 -0.001 0.001 0.000 0.001

AROP60

C 0.119 -0.010 -0.011 0.002 -0.013 -0.003 0.001 -0.005 -0.027 0.002 -0.010
R1 0.160 -0.001 -0.013 -0.012 0.039 0.007 -0.039 0.066 -0.043 -0.029 -0.153
R2 0.000 0.003 0.002 -0.001 0.000 -0.005 0.000 -0.003 0.001 0.000 0.005

MD

C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R1 0.108 -0.003 -0.032 -0.013 0.024 -0.016 0.034 0.032 -0.041 0.017 -0.077
R2 0.000 0.000 0.005 0.000 0.000 -0.002 0.005 -0.001 0.001 0.000 0.005

LJ

C 0.028 -0.010 0.042 0.000 -0.004 -0.010 -0.002 0.002 0.008 0.002 0.008
R1 -0.110 0.001 0.191 0.012 0.000 -0.023 -0.078 0.020 -0.003 -0.001 -0.006
R2 0.000 0.000 -0.001 0.000 0.000 -0.002 0.000 0.000 0.000 0.000 -0.002

The table shows the contribution of each characteristics to the composition
component (C), and to the structure (R1) and compositional (R2) part of
the residual component (see section 2).

quently, the term (C) can be viewed as an additional element arising from partitioning,

indicating the contribution of different group sizes to the composition component. The

terms (R1) and (R2) extend the endowment and composition effects of the standard OB

decomposition by incorporating the relative group-specific effects.

The results of the decomposition are reported in Table 8. The most relevant con-

tributions to the difference between groups in the AROPE decomposition are from age,

working status, household size, and type. The highest coefficient contributions are made

by household size and type, as well as nationality; age is the most important for the

endowment component. For the AROP60 decomposition, household’s head age cover the

major role. The decomposition of the MD index in table 6 is numerically equivalent to the

classic OB decomposition. As the CART algorithm left the data unpartitioned for this

index, the contribution of each characteristic to the difference among groups is zero. The

highest coefficient contribution is again the household age. In the LJ index, age seems the

most relevant explanatory variable both in C and R1; in R1 also working status covers a

large part.
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7 Conclusion

We propose alternative counterfactual decomposition based on grouped data. This method-

ology does not require assuming a parametric model for the regression function and nat-

urally provides a detailed decomposition of each group’s contribution. Importantly, the

decomposition ensures zero composition and residual effects, when the empirical distri-

bution of the two populations is the same. When the data lacks natural clusters, a

data-driven approach such as regression trees offers a valid alternative for grouping the

data. We provide fixed-cell inference valid for a wide range of data-driven partitions.

Monte Carlo evidence investigate the semiparametric nature of the estimator, showing

good finite sample perfomance compared with other methods. In the final section, we

apply the methodology to decompose the rise in poverty rates in Spain following the

Great Recession. Our results indicate that variations in the composition of poverty risk

factors, such as unemployment, explain most of the increase in AROPE rates, while the

rise in material deprivation rates remains unexplained by variations in the composition of

income-based poverty measures. The detailed decomposition reveals that perturbations in

the distribution of the labor force within groups exacerbated poverty, while demographic

changes worked in the opposite direction.
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A Appendix

The appendix is organized as follows. In Section A, we provide the asymptotic distribution

of the decomposition components ∆̂C
C and ∆̂R

C , along with the relative extension to data-

dependent partitions. Section B contains the proofs of all propositions and theorems in

the paper. Section C presents the codification of the poverty-risk factors used in the

empirical application. Finally, in Section D, we provide details about the cross-validation

procedure used by CART.

Proposition 2 (Asymptotic Distribution ∆̂C
C)

Let ∆̂C
C = Â(1) − Â

(1,0)
C be the estimator of the composition component, under assumption

1, 2 (a):
√
n
(
∆̂C

C −∆C
C

)
d−→ N(0, V∆C

),

V∆C
=

L∑
l=1

(p
(1)
l − p

(0)
l )2σ

(1)
l +

L∑
l=1

L∑
f=1

h
(1)
l v(l,f)h

(1)
f − 2

L∑
l=1

L∑
f=1

h
(1)
l c(l,f)(p

(1)
f − p

(0)
f )+

+ 2
L∑
l=1

L∑
f=1

h
(1)
l

(
p(l,f) − p

(1)
l p

(0)
f

)
h
(1)
f

where,

v(l,f) =

p
(1)
l (1− p

(1)
l ) + p

(0)
l (1− p

(0)
l ) if l = f

−(p
(1)
l p

(1)
f + p

(0)
l p

(0)
f ) if l ̸= f

,

and p
(1,0)
(l,f) and c(l,f) are defined as in proposition 1. Under Assumptions 1, and 2 (b),

instead,
√
n1

(
∆̂C

C −∆C
C

)
d−→ N(0, V∆C

),

V∆C
=

L∑
l=1

(p
(1)
l − p

(0)
l )2σ

(1)
l +

1

γ

L∑
l=1

L∑
f=1

h
(1)
l v(l,f)h

(1)
f

Proposition 3 (Asymptotic Distribution ∆̂R
C)

Let ∆̂R
C = Â(1,0) − Â

(0)
C be the estimator of the composition component, under assumption
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1, 2 (a):
√
n
(
∆̂R

C −∆R
C

)
d−→ N(0, V∆R

)

V∆R
=
∑
l=1

(
p
(0)
l

)2 (
σ
(1)
l + σ

(0)
l

)
+

L∑
l=1

(
h
(1)
l − h

(0)
l

)
p
(0)
l (1− p

(0)
l )
(
h
(1)
f − h

(0)
f

)
+

−
∑
l ̸=f

(
h
(1)
l − h

(0)
l

)
(p

(0)
l p

(0)
f )
(
h
(1)
f − h

(0)
f

)
+ 2

L∑
l=1

L∑
f=1

(
h
(1)
l − h

(0)
l

)
c(l,f)p

(0)
f −

− 2
L∑
l=1

L∑
f=1

p
(0)
f

p
(1)
f

(
q
(1,0)
(l,f) − h

(0)
l q

(1)
(f,l) − h

(1)
f q

(0)
(l,f) + h

(0)
l h

(1)
f p(l,f)

)

where q
(1,0)
(l,f) = E

[
Y (1)Y (0)I{X(1) ∈ Cl}I{X(0) ∈ Cf}

]
. Under Assumptions 1, and 2 (b),

√
n1

(
∆̂R

C −∆R
C

)
d−→ N(0, V∆R

),

with

V∆R
=
∑
l=1

(
p
(0)
l

)2(
σ
(1)
l +

σ
(0)
l

γ

)
+

L∑
l=1

(
h
(1)
l − h

(0)
l

) p
(0)
l (1− p

(0)
l )

γ

(
h
(1)
f − h

(0)
f

)
+

−
∑
l ̸=f

(
h
(1)
l − h

(0)
l

)
(p

(0)
l p

(0)
f )
(
h
(1)
f − h

(0)
f

)
.

Corollary 1 (Asymptotic Distribution ∆̂C
Ĉ and ∆̂R

Ĉ with Random Partition)

Under Assumptions 1, 2, 3, and 4,

√
n
(
∆̂C

Ĉ −∆C
C

)
d−→ N (0, V∆C

)

√
n
(
∆̂R

Ĉ −∆R
C

)
d−→ N (0, V∆R

)

where V∆C
and V∆R

are defined as in Propositions 2 and 3, respectively.

B Proofs

Proof of Proposition 1. Under Assumption 2 (a), n1 = n0 = n. Let q̂
(1)
l =

1
n

n∑
i=1

g(Y
(1)
i )I{X(1)

i ∈ Cl} such that ĥ
(1)
l = q̂

(1)
l /p̂

(1)
l for all l, and let q̂(j) = (q̂

(j)
1 , ..., q̂

(j)
L ),
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ĥ(j) = (ĥ
(j)
1 , ..., ĥ

(j)
L ), and p̂(j) = (p̂

(j)
1 , ..., p̂

(j)
L ) for j = 0, 1. Furthermore, denote as q(j),

h(j), and p(j) as the respective probability limit vectors, and define as d(x) the diagonal

matrix with main diagonal elements given by x, for any RL-valued vector x. Then, the

vector:

√
n

ĥ(1) − h(1)

p̂(0) − p(0)

 =
√
n

d(p̂(1)) −d(p̂(1))−1d(h(1)) 0

0 0 IL



q̂(1) − q(1)

p̂(1) − p(1)

p̂(0) − p(0)


has the following limit distribution:

√
n

ĥ(1) − h(1)

p̂(0) − p(0)

 d−→ N(0, V ) with V =

V (1)
h Vc

V ′
c V

(0)
p

 ,

V
(1)
h =


σ
(1)
1 0 · · · 0

0 σ
(1)
2 · · · 0

...
...

. . .
...

0 0 · · · σ
(1)
L

V (0)
p =


p
(0)
1 (1− p

(0)
1 ) −p

(0)
1 p

(0)
2 · · · −p

(0)
1 p

(0)
L

−p
(0)
2 p

(0)
1 p

(0)
2 (1− p

(0)
2 ) · · · −p

(0)
2 p

(0)
L

...
...

. . .
...

−p
(0)
L p

(0)
1 −p

(0)
2 p

(0)
L · · · p

(0)
L (1− p

(0)
L ),


and

Vc = Cov
(√

np̂(0),
√
nq̂(1)

)
d(p(1))−1 − Cov

(√
np̂(0),

√
np̂(1)

)
d(p(1))−1d(h(1)),

is an L× L matrix with typical elements

{
c(l,f)

}L
l,f=1

=

{
q
(1)
(l,f) − h

(1)
f p

(0,1)
(l,f)

p
(1)
f

}L

l,f=1

.

An application of the delta method to µ
(1,0)
Y,C = h(1)′p(0) gives the result,

√
n1

(
µ̂
(1,0)
Y,C − A

(1,0)
C

)
d−→ N

(
0, [p(0)

′
, h(1)′ ]V [p(0)

′
, h(1)′ ]′

)
= N (0, VA) .
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Under Assumption 2 (b), instead,

√
n1

ĥ(1) − h(1)

p̂(0) − p(0)

 d−→ N(0, V ) with V =

V (1)
h 0

0
V

(0)
p

γ

 ,

and, thus, VA =
L∑
l=1

(
(p

(0)
l )σ

(1)
l + 1

γ
(h

(1)
l )2p

(0)
l (1− p

(0)
l )
)
− 1

γ

∑
l ̸=f

h
(1)
l h

(1)
f p

(0)
l p

(0)
f .

Proof of Proposition 2. Under Assumption 2 (a),

√
n


ĥ(1) − h(1)

p̂(0) − p(0)

p̂(1) − p(1)

 =
√
n


|p̂(1)| −|p̂(1)|−1|h(1)| 0

0 0 IL

0 IL 0



q̂(1) − q(1)

p̂(1) − p(1)

p̂(0) − p(0)


converges to a normal distribution with mean 0 and variance V , N(0, V ), where

V =


V

(1)
h Vc 0

V ′
c V

(0)
p V

(1,0)
p

0 V
(1,0)′
p V

(1)
p

 .

Here, Vc is as in the proof of Proposition 1, while V
(1,0)
p is an L × L matrix with typical

elements given by {p(l,f) − p
(1)
l p

(0)
f }Ll,f=1. After noticing that ∆C

C = h(1)′
(
p(1) − p(0)

)
, the

result follows from the delta method,

√
n
(
∆̂C

C −∆C
C

)
d−→ N(0, V∆C

),

where

V∆C
= (p(1)−p(0))′V

(1)
h +h(1)′

(
V (1)
p + V (0)

p

)
+h(1)′

(
V (1,0)
p + V (1,0)′

p

)
h(1)−2h(1)′V ′

c (p
(1)−p(0)).
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Under Assumption 2 (b), instead,

√
n1


ĥ(1) − h(1)

p̂(0) − p(0)

p̂(1) − p(1)

 d−→ N(0, V )

with

V =


V

(1)
h 0 0

0
V

(0)
p

γ
0

0 0 V
(1)
p

 .

And it follows that,

V∆C
= ∆f ′V∆f =

(
p(1) − p(0)

)′
V

(1)
h

(
p(1) − p(0)

)
+

1

γ
h(1)′

(
γV (1)

p + V (0)
p

)
h(1).

Proof of Proposition 3. Under Assumption 2 (a),

√
n


ĥ(1) − h(1)

ĥ(0) − h(0)

p̂(0) − p(0)

 =
√
n


|p̂(1)| −|p̂(1)|−1|h(1)| 0 0

0 0 |p̂(0)| −|p̂(0)|−1|h(0)|

0 0 0 IL



q̂(1) − q(1)

p̂(1) − p(1)

q̂(0) − q(0)

p̂(0) − p(0)


converges to a normal distribution with mean 0 and variance V , N(0, V ),

V =


V

(1)
h Vc2 Vc

V ′
c2

V
(0)
h 0

V ′
c 0 V

(1)
p

 .

where Vc2 is an L× L matrix with typical elements given by

{
q
(1,0)
(l,f) − h

(0)
l q

(1)
(f,l) − h

(1)
f q

(0)
(l,f) + h

(0)
l h

(1)
f µ(l,f)

}L

l,f=1
.
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Then, by the delta method,

√
n
(
∆̂R

C −∆R
C

)
d−→ N(0, V∆R),

where

V∆R = p(0)
′
(
V

(1)
h + V

(0)
h − Vc2 − V ′

c2

)
p(0)+2(h(1)−h(0))′V ′

cp
(0)+

(
h(1) − h(0)

)′
Vp(0)

(
h(1) − h(0)

)
.

Under Assumption 2(b),

√
n


ĥ(1) − h(1)

ĥ(0) − h(0)

p̂(0) − p(0)

 d−→ N(0, V ),

with

V =


V

(1)
h 0 0

0
V

(0)
h

γ
0

0 0
V

(1)
p

γ

 .

and

V∆R = p(0)
′

(
V

(1)
h +

V
(0)
h

γ

)
p(0) +

(
h(1) − h(0)

)′ V (0)
p

γ

(
h(1) − h(0)

)
.

Proof of Theorem 1 and Corollary 1. Let // denote weak convergence on

l∞(C) (see definition 13.3 in Van Der Vaart 1996, hereafter VW), where l∞(C) is the

space of all real-valued functions that are uniformly bounded on C. For any class of

functions F , denote as {Pnf : f ∈ F} the empirical measure indexed by F , such that

Pnf = n−1
∑

f(Zi); alike, Pf denotes the population measure, Pf =
∫
f(Z)dP . We

say that a class of functions is: i) Glivenko-Cantelli for P (hereafter, P -GC) whenever

supf∈F |Pn−P |f = op(1); ii) P -Donsker if {
√
n(Pn−P )f : f ∈ F} converge in distribution

to a tight random element in the space l∞(F). Throughout, we refer to both classes of

sets with finite VC dimension and classes of functions with finite VC subgraph dimension

as VC classes. These classes, having uniformly bounded covering numbers (Theorem

2.6.7 in VW), are Glivenko-Cantelli and Donsker (see Theorem 2.4.3 and 2.5.2 in VW)
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for any probability measure on the sample space, provided that they have integrable

and square-integrable envelope function, respectively. Below, we provide the proof for

Theorem 1 under the data structure of Assumption 2 (a). The proof for both Theorem 1

and Corollary 1 under Assumption 2 (b) are similar and not reported. In the following,

IC(X) = (I{X ∈ C1}, ...., I{X ∈ CL})′, denotes the vector of indicator functions over C.

Let ε̂(C) = (ε̂′q(C), ε̂′µ1
(C), ε̂′p0(C))

′, where ε̂q(C) = (Pn − P )g(y)I{j = 1}IC(x),

ε̂p1(C) = (Pn − P )I{j = 1}IC(x), and ε̂p0(C) = (Pn − P )I{j = 0}IC(x) are empirical

processes indexed by partitions in C. By the CLT, the finite-dimensional distributions

of
√
nε̂(C) are the same of

√
n(q̂(1) − q(1), p̂(1) − p(1), p̂(0) − p(0)). Also, by Lemma 2.6.17

and 2.6.18 in VW, and Assumption 4, Fq = {yI{j = 1}IC(x) : C ∈ C}, Fp1 = {I{j =

1}IC(x) : C ∈ C}, and Fp0 = {I{j = 0}IC(x) : C ∈ C} are VC classes with square

integrable envelope, Fq = |y|, Fp1 = |1|, and Fp0 = |1|, respectively. It follows that,

F = Fq × Fp1 × Fp0 = {(yIC(x), I{j = 1}IC(x), I{j = 0}IC(x))′ : C ∈ C} is also VC and

P -Donsker. Thus,
√
nε̂(·) // ε0(·) as a process on l∞(C),

where ε0(·) is an R3L-valued Gaussian process with zero mean vector and covariance

structure given by,

E [H(Y, j)IC1(X)IC2(X)′H(Y, j)]− E [H(Y, j)IC2(X)]E [H(Y, j)IC2(X)]′ ∀C1,C2 ∈ C,

with H(y, j) = (g(y), I{j = 1}, I{j = 0})′ ⊗ IL and ⊗ being the Kronecker product.

Furthermore, by Assumption 4, both C∆C = {C1∆C2 : C1,C2 ∈ C} and (C∆C)(1) =

{I{j = 1}IC̃(x) : C̃ ∈ C∆C} are VC classes, where ∆ is the symmetric difference operator.

Therefore, by Assumption 3,

|p̂(1)(Ĉ)− p̂(1)(C) ≤ sup
C̃∈C∆C

|Pn − P |IC̃(x)I{j = 1}+ E [I{j = 1}IĈ∆C(X)] = op(1),

where p̂(1)(C) = PnI{j = 1}IC(x) highlights the dependence of the empirical measure on

the partition.
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Finally, by Assumptions 3, 4, and the uniform continuity of the sample paths of ε0(·),

√
n
(
µ̂
(1,0)

Y,Ĉ
− µ

(1,0)
Y,C

)
=

d(p̂(1)(Ĉ)) −d(p̂(1)(Ĉ))−1d(h(1)(Ĉ)) 0

0 0 IL

 ε̂(Ĉ)

d
=

d(µ̂(1)(C)) −d(µ̂(1)(C))−1d(h(1)(C)) 0

0 0 IL

 ε0(C) + op(1).

C Codification of the Poverty Risk Factors

Nat & Cb

The variable Nat indicates the nationality of the individual, while Cb the country of birth.

They take the following values: Spain (1), rest of European Union (EU28) (2), rest of the

world (3).

Educ

The variable Educ denotes the education level: Less than primary (0), primary educa-

tion (1), first-stage secondary education (2), second-stage secondary education (3), post-

secondary education (4), higher education (5).

Ws

The variable Ws denotes the working status of the individual: employed (full-time) (1),

employed (part-time) (2), inactive (3), student or in formation (4), retired, early retired

or have closed down a business (5), permanently unable to work (6), compulsory military

service or substitute social service (7), dedicated to housework, care of children or other

persons (8), other class of economic inactivity (9).

HHtype

The variable HHtype denotes the type of household where the individual lives: 1 Adult:

Male < 30 years old (1), 1 Adult: 30 ≥ Male ≤ 64 years old (2), 1 Adult: Male ≥ 65 years

old (3), 1 Adult: Female < 30 years old (4), 1 Adult: 30 ≤ Female ≤ 64 years old (5),

1 Adult: Female ≥ 65 years old (6), 2 Adults without financially dependent children2,

2Note, the classification of financially dependent children includes all those under the age of 18 and
those who are 18 and older but under 25 and economically inactive.
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at least one person above 65 years of age (7), 2 Adults without financially dependent

children, both below 65 years of age (8), other type of household without financially

dependent children (9), 1 Adult with at least a dependent child (10), 2 Adults with a

dependent child (11), 2 Adults with 2 dependent children (12), 2 Adults with 3 or more

dependent children (13), other type of household with dependent children (14).

HHsyze

The variable HHsyze denotes the size of the household. It can take values from 1 to 14.

HHhage

The variable HHsyze denotes the age of the household head. It can take value from 25 to

99.

Sex

The variable Sex denotes the gender of the individual: Male =1; Female=2.

D CART

The algorithm consists of two parts, initial tree building and cross-validation phase. In

the initial tree building phase, the algorithm recursively partitions the data according

to a in-sample goodness-of-fit measure and a penalty term, which regulates the depth

of the tree. In the cross-validation phase, the algorithm determines the optimal penalty

term by repeatedly splitting the sample into a training sample and a cross-validation

sample. The training sample is used to generate a partition and to estimate the conditional

mean function; the cross-validation sample is used to evaluate the estimates based on

the partition generated by the training sample. The optimal penalty term maximizes a

goodness-of-fit criterion in cross-validation samples. In the grouping procedure we use the

sample of population (1) to generate the splitting rules, which are then applied to split

the sample of both populations.

Initial Tree-Building Phase

Let denote a partition as CCART

Lt
, where the sub-script Lt indicates the dependency of the

number of set in each partition from the t-th iteration of the algorithm. Fix a given

iteration t and partition CCART

Lt
, then for any Cl ∈ CCART

Lt
the algorithm selects a threshold c

and one of the covariates Xik to split Cl into two smaller sets by minimizing the following
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objective function:

QCl
(k, c) subject to QCl

≥ λLt +QCl
(k, c)

Where QCl
and QCl

(k, c) denote the in-sample goodness-of-fit before and after the split

respectively, such that:

QCl
=

∑
i:X

(1)
i ∈Cl

(
Y

(1)
i − ĥ(1)(Cl)

)2
And

QCl
(k, c) =

∑
i:X

(1)
i ∈Cl,X

(1)
ik ≤c

(
Y

(1)
i − ĥ

(1)
l (Cl, c)

)2
+

∑
i:X

(1)
i ∈Cl,X

(1)
ik >c

(
Y

(1)
i − ĥ(1)

r (Cl, c)
)2

Where ĥ
(1)
r (Cl, c) =

n1∑
i=1

g(Y
(1)
i )I{X(1)

i ∈Cl}
n1∑
i=1

I{X(j)
i ∈Cl : X

(1)
ik ≤c}

and ĥ
(1)
r (Cl, c) =

n1∑
i=1

g(Y
(1)
i )I{X(1)

i ∈Cl}
n1∑
i=1

I{X(j)
i ∈Cl : X

(1)
ik >c}

.

The penalty term λLt punishes the partitions with too many classes. For a split to be

done, the splitting point c on the covariate Xik should improve the in-sample goodness-of-

fit criterion by at least λLt. When Xik is a factor variable (non-ordered or non-numerical),

the split is done by selecting two subsets of categories of Xik, rather than dividing above

and below the threshold c.

Cross-Validation Phase

Let S(1) be the sample of population (1), and denote the partition obtained in the initial

tree building phase as CCART(S(1), λ). The next step is to search over a grid of values

ΛM = {λ1, ..., λM} the λ that maximizes the goodness-of-fit criterion in cross-validation

samples. In this step, we drop the dependence of Lt from the number of iteration since it is

not relevant for the discussion and consider it as a function of the sample and the penalty

term; that is, L = L(S(1), λ). Common cross-validation practices include the k-fold cross-

validation and the leave-one-out cross-validation. Without loss of generality, we discuss

the latter. For each λ ∈ ΛM and i ∈ {1, 2, ..., n1} we split S(1) into a training sample

S
(1)
−i including all the observations in S(1) but i and a cross-validation sample {i}. For
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each training sample S
(1)
−i we generate a partition CCART(S

(1)
−i , λ) = {Cl(S

(1)
−i , λ)}

L(S
(1)
−i ,λ)

l=1 and

estimate the conditional mean in the leaf (set) of CCART(S
(1)
−i , λ) where the cross-validation

sample lies. That is:

ĥ(1)
(
X

(1)
i ,C(S(1)

−i , λ)
)
=

L(S
(1)
−i ,λ)∑
l=1

∑
j ̸=i Y

(1)
i I{X(1)

j ∈ Cl(S
(1)
−i , λ)}∑

j ̸=i I{X
(1)
j ∈ Cl(S

(1)
−i , λ)}

I{X(1)
i ∈ Cl(S

(1)
−i , λ)}

We calculate the error on observation i: e
(1)
i (λ) = Y

(1)
i − ĥ(1)

(
X

(1)
i ,CCART(S

(1)
−i , λ)

)
and

choose the λ∗ that minimize the average mean square error over all n1 observations:

λ∗ = argmin
λ∈ΛM

n1∑
i=1

[
e
(1)
i (λ)

]2
Finally, we get our chosen partition CCART

L = CCART(S(1), λ∗) and use (19) to estimate the

counterfactual mean. All the above procedure using CART can be easily implemented

using the R-package Rpart.
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